How to count number of terms in a symbolic expression?

15 Ansichten (letzte 30 Tage)
Mehdi
Mehdi am 2 Dez. 2023
Kommentiert: Walter Roberson am 3 Dez. 2023
I have a long symbolic expression composed of many terms. How is it possible to count the total number of terms of my expression and then choose the ith term?
syms x y
z=x*y+cos(x*y)*x+x*sin(x)+sin(x)*cos(x)-x-y+2;
for example here the z is composed of 7 terms and the 3rd term is x*sin(x).

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 3 Dez. 2023
Bearbeitet: Walter Roberson am 3 Dez. 2023
syms x y
z=x*y+cos(x*y)*x+x*sin(x)+sin(x)*cos(x)-x-y+2;
terms = children(z)
terms = 1×7 cell array
{[-x]} {[-y]} {[cos(x)*sin(x)]} {[x*y]} {[x*cos(x*y)]} {[x*sin(x)]} {[2]}
nterms = length(terms)
nterms = 7
terms{3}
ans = 
children(z, 3)
ans = 
  2 Kommentare
Walter Roberson
Walter Roberson am 3 Dez. 2023
Notice the "third" term as far as MATLAB is concerned is not x*sin(x)
MATLAB re-arranges terms according to algebraic equivalences, into its own preferred order. The rules for ordering are not published, and can be contextual.
Walter Roberson
Walter Roberson am 3 Dez. 2023
Further example:
syms x
f = 6 + x - 3 - 2 - 1
as far as the symbolic toolbox is concerned this is the same as
f = x
The toolbox always folds rational and symbolic floating point numbers
5 + 2*sqrt(sym('3.2'))
will get completely executed to scalar
5 + 2*sqrt(sym(3.2))
will execute to an expression. sym(3.2) is converted to sym(32)/sym(10) and sqrt of a rational is not fully evaluated

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

VBBV
VBBV am 3 Dez. 2023
Bearbeitet: VBBV am 3 Dez. 2023
syms x y
z='x*y+cos(x*y)*x+x*sin(x)+sin(x)*cos(x)-x-y+2'
z = 'x*y+cos(x*y)*x+x*sin(x)+sin(x)*cos(x)-x-y+2'
C = strsplit(z,{'+','-'})
C = 1×7 cell array
{'x*y'} {'cos(x*y)*x'} {'x*sin(x)'} {'sin(x)*cos(x)'} {'x'} {'y'} {'2'}
length(C)
ans = 7
C{3} % 3rd term
ans = 'x*sin(x)'
  4 Kommentare
Walter Roberson
Walter Roberson am 3 Dez. 2023
Bearbeitet: Walter Roberson am 3 Dez. 2023
Consider
syms x y
z='x*y+cos(x-y)*x+x*sin(x)+sin(x)*cos(x)-x-y+2'
z = 'x*y+cos(x-y)*x+x*sin(x)+sin(x)*cos(x)-x-y+2'
C = strsplit(z,{'+','-'})
C = 1×8 cell array
{'x*y'} {'cos(x'} {'y)*x'} {'x*sin(x)'} {'sin(x)*cos(x)'} {'x'} {'y'} {'2'}
length(C)
ans = 8
C{3} % 3rd term
ans = 'y)*x'
The pattern matching has to be a lot more complicated to extract expressions. Indeed, it can be proven that it cannot be done using traditional regular expressions -- not unless you are willing to impose a maximum nesting depth (and use terribly messy expressions.) Some programming languages such as perl add regexp constructs that extend the pattern capabilities to make it possible; if MATLAB has those facilities I am overlooking them.

Melden Sie sich an, um zu kommentieren.

Tags

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by