pso doesnt go to main loop
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
i edit the code for optimize ,y cost function
%
% Copyright (c) 2015, Mostapha Kalami Heris & Yarpiz (www.yarpiz.com)
% All rights reserved. Please read the "LICENSE" file for license terms.
%
% Project Code: YPEA102
% Project Title: Implementation of Particle Swarm Optimization in MATLAB
% Publisher: Yarpiz (www.yarpiz.com)
%
% Developer: Mostapha Kalami Heris (Member of Yarpiz Team)
%
% Cite as:
% Mostapha Kalami Heris, Particle Swarm Optimization in MATLAB (URL: https://yarpiz.com/50/ypea102-particle-swarm-optimization), Yarpiz, 2015.
%
% Contact Info: sm.kalami@gmail.com, info@yarpiz.com
%
%edit by MR.N
% function y = CostFunction(amp,teta)
clear;
close all;
% clc;
toc
%% Problem Definition
% CostFunction = @(x) Sphere(x); % Cost Function
nVarAmr = 10; % Number of Decision Variables
nVarTetar = 10;
VarSizeAmr = [1 nVarAmr]; % Size of Decision Variables Matrix
VarSizeTetar = [1 nVarTetar];
VarMinAmr = 0; % Lower Bound of Variables
VarMaxAmr = 1; % Upper Bound of Variables
VarMinTetar = -90; % Lower Bound of Variables
VarMaxTetar = 90; % Upper Bound of Variables
%% PSO Parameters
MaxIt = 10000; % Maximum Number of Iterations
nPop = 1000; % Population Size (Swarm Size)
% PSO Parameters
w = 1; % Inertia Weight
wdamp = 0.99; % Inertia Weight Damping Ratio
c1 = 1.5; % Personal Learning Coefficient
c2 = 2.0; % Global Learning Coefficient
% If you would like to use Constriction Coefficients for PSO,
% uncomment the following block and comment the above set of parameters.
% % Constriction Coefficients
% phi1 = 2.05;
% phi2 = 2.05;
% phi = phi1+phi2;
% chi = 2/(phi-2+sqrt(phi^2-4*phi));
% w = chi; % Inertia Weight
% wdamp = 1; % Inertia Weight Damping Ratio
% c1 = chi*phi1; % Personal Learning Coefficient
% c2 = chi*phi2; % Global Learning Coefficient
% Velocity Limits
VelMaxAmr = 0.1*(VarMaxAmr-VarMinAmr);
VelMinAmr = -VelMaxAmr;
VelMaxTetar = 0.1*(VarMaxTetar-VarMinTetar);
VelMinTetar = -VelMaxTetar;
%% Initialization
empty_particle.PositionAmr = [];
empty_particle.CostAmr = [];
empty_particle.VelocityAmr = [];
empty_particle.Best.PositionAmr = [];
empty_particle.Best.CostAmr = [];
empty_particle.PositionTetar = [];
empty_particle.CostTetar = [];
empty_particle.VelocityTetar = [];
empty_particle.Best.PositionTetar = [];
empty_particle.Best.CostTetar = [];
particleAmr = repmat(empty_particle.PositionAmr , nPop, 1);
particleTetar = repmat(empty_particle.PositionTetar, nPop, 1);
GlobalBest.Cost = inf;
for i = 1:nPop
% Initialize Position
particle(i).PositionAmr = unifrnd(VarMinAmr, VarMaxAmr,VarSizeAmr);
particle(i).PositionTetar = unifrnd(VarMinTetar, VarMaxTetar, VarSizeTetar);
particle(i).Position = [particle(i).PositionAmr,particle(i).PositionTetar];
% Initialize Velocity
particle(i).VelocityAmr = zeros(VarSizeAmr)+0.00001;
particle(i).VelocityTetar = zeros(VarSizeTetar)+0.00001;
% Evaluation
particle(i).Cost = CostFunction(particle(i).PositionAmr,particle(i).PositionTetar);
% Update Personal Best
particle(i).Best.PositionAmr = particle(i).PositionAmr;
particle(i).Best.PositionTetar = particle(i).PositionTetar;
particle(i).Best.Cost = particle(i).Cost;
% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost
GlobalBest = particle(i).Best;
end
end
BestCost = zeros(MaxIt, 1);
%% PSO Main Loop
for it = 1:MaxIt
for i = 1:nPop
% Update Velocity
particle(i).VelocityAmr = w*particle(i).VelocityAmr ...
+c1*rand(VarSizeAmr).*(particle(i).Best.PositionAmr-particle(i).PositionAmr) ...
+c2*rand(VarSizeAmr).*(GlobalBest.PositionAmr-particle(i).PositionAmr);
particle(i).VelocityTetar = w*particle(i).VelocityTetar ...
+c1*rand(VarSizeTetar).*(particle(i).Best.PositionTetar-particle(i).PositionTetar) ...
+c2*rand(VarSizeTetar).*(GlobalBest.PositionTetar-particle(i).PositionTetar);
% Apply Velocity Limits
particle(i).VelocityAmr = max(particle(i).VelocityAmr, VelMinAmr);
particle(i).VelocityAmr = min(particle(i).VelocityAmr, VelMaxAmr);
particle(i).VelocityTetar = max(particle(i).VelocityTetar, VelMinTetar);
particle(i).VelocityTetar = min(particle(i).VelocityTetar, VelMaxTetar);
% Update Position
particle(i).PositionAmr = particle(i).PositionAmr + particle(i).VelocityAmr;
particle(i).PositionTetar = particle(i).PositionTetar + particle(i).VelocityTetar;
% Velocity Mirror Effect
IsOutside = (particle(i).PositionAmr<VarMinAmr | particle(i).PositionAmr>VarMaxAmr);
particle(i).VelocityAmr(IsOutside) = -particle(i).VelocityAmr(IsOutside);
IsOutside = (particle(i).PositionTetar<VarMinTetar | particle(i).PositionTetar>VarMaxTetar);
particle(i).VelocityTetar(IsOutside) = -particle(i).VelocityTetar(IsOutside);
% Apply Position Limits
particle(i).PositionAmr = max(particle(i).PositionAmr, VarMinAmr);
particle(i).PositionAmr = min(particle(i).PositionAmr, VarMaxAmr);
particle(i).PositionTetar = max(particle(i).PositionTetar, VarMinTetar);
particle(i).PositionTetar = min(particle(i).PositionTetar, VarMaxTetar);
% Evaluation
% particle(i).Cost = CostFunction(particle(i).Position);
% change above according to chatgpt
particle(i).Cost = CostFunction(particle(i).PositionAmr, particle(i).PositionTetar);
% Update Personal Best
if particle(i).Cost<particle(i).Best.Cost
particle(i).Best.Position = particle(i).Position;
particle(i).Best.Cost = particle(i).Cost;
% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost
GlobalBest = particle(i).Best;
end
end
end
% disp(['Particle ' num2str(i) ', Iteration ' num2str(it) ':']);
% disp([' VelocityAmr = ' num2str(particle(i).VelocityAmr)]);
% disp([' VelocityTetar = ' num2str(particle(i).VelocityTetar)]);
% BestCost(it) = GlobalBest.Cost;
%
% disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
w = w*wdamp;
end
% function y = CostFunction (Amr,deltaTeta)
function y = CostFunction (PositionAmr,PositionTetar)
freq = 9*10^9; %Freq
j = sqrt(-1); %Define Imaginary
l =(3*10^8)/freq; %Lambda
k = (2*pi)/l; %Constant
d = 0.5*l; %Distant of each element
elementNumb = 10;
step = 1;
teta1 = ((-80) :step: (-15));
teta2 = ((-15) :step: (0));
teta3 = ((0) :step: (15));
teta4 = ((25) :step: (40));
teta5 = ((40) :step: (60));
tetat = [teta1,teta2,teta3,teta4,teta5];
lenteta1 = length(teta1);
sumLenteta12 = length(teta1) + length(teta2);
sumLenteta123 = length(teta3) + sumLenteta12;
sumLenteta1234 = sumLenteta123 + length(teta4);
g = zeros(elementNumb,length(tetat));
for h = 1:elementNumb
%%teta1
for aa = 1:length(teta1)
g(h,aa) = g(h,aa)+(PositionAmr(h) * ( exp(j*(h-1) * (k*d*sind(teta1(aa)+PositionTetar(h)))))); %w W
end
%%teta2
for bb=(lenteta1+1):(sumLenteta12)
g(h,bb) =g(h,bb)+( PositionAmr(h) * exp(j*(h-1) * (k*d*sind(teta2(bb-lenteta1)+PositionTetar(h))))); %with W
end
%%teta3
for cc = (sumLenteta12+1):(length(teta3)+sumLenteta12)
g(h,cc) = (g(h,cc)+( PositionAmr(h) * exp(j*(h-1) * (k*d*sind(teta3(cc-sumLenteta12)...
+PositionTetar(h)))))); %w W
end
%%teta4
for dd = (sumLenteta123+1):(sumLenteta123+length(teta4))
g(h,dd) = g(h,dd)+( PositionAmr(h) * exp(j*(h-1) * (k*d*sind(teta4(dd-(sumLenteta123))...
+PositionTetar(h)))));
end
%%teta5
for ee = (sumLenteta1234+1):(sumLenteta1234+length(teta5))
g(h,ee) = g(h,ee)+( PositionAmr(h) * exp(j*(h-1) * (k*d*sind(teta5(ee-(sumLenteta1234))...
+PositionTetar(h))))); %w W
end
end
y = abs(sum(g,1));
end
it has 20 variable which those consist of amplitude (Amr) and angle (Tetar)
and separated my cost function to 5 section for my next goal ( i want to prioritize each section for example area two should be more minimize than others or i want to inverse my cost function
1/( PositionAmr(h) * exp(j*(h-1) * (k*d*sind(teta(ee-(sumLenteta1234))...
+PositionTetar(h)))))
to maximize in some area
it has a loop which optimize my variable but after several time check i recognize it doesnt go to this loop and the first value always remain up to end
% Update Personal Best
if particle(i).Cost<particle(i).Best.Cost
particle(i).Best.Position = particle(i).Position;
particle(i).Best.Cost = particle(i).Cost;
% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost
GlobalBest = particle(i).Best;
end
should i put some condition for it ?
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Get Started with Optimization Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!