Fixed Bed Adsorption Column Using Dimensionless Equations

9 Ansichten (letzte 30 Tage)
tori lansing
tori lansing am 30 Nov. 2023
Kommentiert: Torsten am 4 Dez. 2023
My group and I are trying to write a code for fixed bed adsorption with dimensionless equations and Damkohler's number. I attached an image of the equations we're trying to use and variables. We have a general idea and some code written down of what the variables are meaning but would like some help on where to go with the ODE/PDE code as we're not familiar with them. Any help, guidance, or advice would be greatly appreciated. Thank you very much in advance.

Akzeptierte Antwort

Torsten
Torsten am 1 Dez. 2023
Bearbeitet: Torsten am 1 Dez. 2023
The usual procedure is to define a grid
0 = X(1) < X(2) < ... < X(n) = 1
approximate the spatial derivative dA/dX in grid point i by
dA(i)/dx ~ (A(i)-A(i-1))/(X(i)-X(i-1)),
keep the time derivatives in their continuous form,
write the PDE system as a system of 2*n ordinary differential equations
A(1) = A_in
dA(i)/dt = - (A(i)-A(i-1))/(X(i)-X(i-1)) - q0/A_in * s(q(i),A(i)) 2<=i<=n
dq(i)/dt = s(q(i),A(i)) 1<=i<=n
and use ode15s to solve the system.
If you need further details, look up "method-of-lines".
  7 Kommentare
Torsten
Torsten am 4 Dez. 2023
To get a foundation in MATLAB programming, I suggest the MATLAB Onramp course to learn about MATLAB basics in an online course free of costs:
Torsten
Torsten am 4 Dez. 2023
Here is a short code with the explicit method for the problem:
dy/dt + a*dy/dx = 0
a > 0
0 <= x <= 1
y(x,t=0) = 0 for all x
y(x=0,t) = 1 for all t
It's already very similar to yours.
a = 0.1;
tstart = 0.0;
tend = 2.0;
nt = 1000;
xstart = 0.0;
xend = 1.0;
nx = 1000;
x = linspace(xstart,xend,nx).';
dx = x(2)-x(1);
t = linspace(tstart,tend,nt);
dt = t(2)-t(1);
y = zeros(nx,nt);
y(:,1) = 0.0;
y(1,:) = 1.0;
for it = 2:nt
y(2:nx,it) = y(2:nx,it-1) - dt * a * (y(2:nx,it-1)-y(1:nx-1,it-1))./(x(2:nx)-x(1:nx-1));
end
plot(x,[y(:,1),y(:,500),y(:,1000)])

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Produkte


Version

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by