
how can I smooth the graph for a set of varying data points??
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Shahriar Shafin
am 30 Nov. 2023
Kommentiert: Mathieu NOE
am 30 Nov. 2023
How can I make the graph more smooth and equlibriate perfectly with the upper graph like the right one in MATLAB??
data sets are given below :

0 Kommentare
Akzeptierte Antwort
Mathieu NOE
am 30 Nov. 2023
hello
maybe this ? (I optd for a exponential fit of your lattice data)

data1 = readmatrix('lattice vs time plot.xlsx');
x1 = data1(:,1);
y1 = data1(:,2);
data2 = readmatrix('electron vs time plot.xlsx');
x2 = data2(:,1);
y2 = data2(:,2);
[k, yInf, y0, yFit] = fitExponential(x1, y1);
figure(1);
plot(x1,y1,'g',x2,y2,'r','linewidth',2);
hold on
plot(x1,yFit,'k','linewidth',5);
hold off
% apply corrective factor on fitted curve to math the other curve asymptote
y2_asymp = mean(y2(round(end/2):end));
correction_factor = y2_asymp/yFit(end);
yFit = yFit*correction_factor;
figure(2);
plot(x1,y1,'g',x2,y2,'r','linewidth',2);
hold on
plot(x1,yFit,'k','linewidth',5);
hold off
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [k, yInf, y0, yFit] = fitExponential(x, y)
% FITEXPONENTIAL fits a time series to a single exponential curve.
% [k, yInf, y0] = fitExponential(x, y)
%
% The fitted curve reads: yFit = yInf + (y0-yInf) * exp(-k*(x-x0)).
% Here yInf is the fitted steady state value, y0 is the fitted initial
% value, and k is the fitted rate constant for the decay. Least mean square
% fit is used in the estimation of the parameters.
%
% Outputs:
% * k: Relaxation rate
% * yInf: Final steady state
% * y0: Initial state
% * yFit: Fitted time series
%
% improve accuracy by subtracting large baseline
yBase = y(1);
y = y - y(1);
fh_objective = @(param) norm(param(2)+(param(3)-param(2))*exp(-param(1)*(x-x(1))) - y, 2);
initGuess(1) = -(y(2)-y(1))/(x(2)-x(1))/(y(1)-y(end));
initGuess(2) = y(end);
initGuess(3) = y(1);
param = fminsearch(fh_objective,initGuess);
k = param(1);
yInf = param(2) + yBase;
y0 = param(3) + yBase;
yFit = yInf + (y0-yInf) * exp(-k*(x-x(1)));
end
4 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!