impedance matching single stub
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Moza
am 29 Nov. 2023
Beantwortet: David Goodmanson
am 30 Nov. 2023
I am trying to plot the reflection coefficient magnitude from 1 to 3 GHz for a single stub Short circuit to get the result below.
I worked on the code but I am not getting the same result.
clear all;
close all;
clc;
f = linspace(1e9, 3e9, 2000);
omega = 2 * pi * f; % Angular frequency
Z0 = 50;
R_load = 60;
C_load = 0.995e-12;
Gamma1 = zeros(size(f));
Gamma2 = zeros(size(f));
c = 3e8;
lambda = c ./ f
l_stub1 = 0.110*(c./2e9);
l_stub2 = 0.260*(c./2e9);
for i = 1:length(f)
lambda = c / f(i); % Wavelength
beta = 2 * pi / lambda; % Phase constant
% Load impedance (complex due to capacitor)
ZL = R_load - 1i./(omega(i) * C_load)*l_stub1;
ZL1 = R_load - 1i./(omega(i) * C_load)*l_stub2;
% Stub impedances (short-circuited stub)
Z_stub1 = -1i * Z0 * tan(beta * l_stub1); % Solution #1
Z_stub2 = -1i * Z0 * tan(beta * l_stub2); % Solution #2
% Total impedance at the point where the stub connects
Z_total1 = 1 ./ (1./ZL + 1./Z_stub1);
Z_total2 = 1 ./ (1./ZL + 1./Z_stub2);
% Reflection coefficients
Gamma1(i) = (Z_total1 - Z0) / (Z_total1 + Z0);
Gamma2(i) = (Z_total2 - Z0) / (Z_total2 + Z0);
end
absGamma1 = abs(Gamma1);
absGamma2 = abs(Gamma2);
figure;
plot(f / 1e9, absGamma1, 'b', f / 1e9, absGamma2, 'r--');
xlabel('Frequency (GHz)');
ylabel('|Γ|');
title('Magnitude of Reflection Coefficient |Γ| versus Frequency');
legend('Solution #1', 'Solution #2');
grid on;

0 Kommentare
Akzeptierte Antwort
David Goodmanson
am 30 Nov. 2023
Hi Moza,
You have most of it, but you need to add a step and change a sign error. The section terminated by R and C, I called that section A of length la, and the shorted section is section S of length ls.
At the point where the two lines connect, the impedance of section A is not ZL, which is at the right end of the line, but rather the impedance seen at left end of the line, which is
Za = Z0*(ZL + i*Z0*tan(beta*la))./(Z0 + i*ZL.*tan(beta*la)); (1)
and your shorted stub impedance has a sign error and should be
Zs = (i*Z0*tan(beta*ls)); (2)
I defined (same as what you have)
lambda0 = c/2e9; so
case 1 la = .110*lambda0; ls = .095*lambda0;
case 2 la = .260*lambda0; ls = .405*lambda0;
If you add the new Za and Zs in parallel and keep going you will reproduce the plots.
Incidentally, with vector f a for loop is unnecessary if enough .* and ./ are used, which it seems like you already have quite a few of but not all.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Circuit Envelope Simulation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!