precision-recall curve for faster rcnn
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
ahmad
am 27 Nov. 2023
Beantwortet: Walter Roberson
am 28 Nov. 2023
hi
i want to find precision-recall curve of my tranied faster rcnn detector.i tried thi code
testData = transform(testData,@(data)preprocessData(data,inputSize));
detectionResults = detect(detector,testData,'MinibatchSize',4);
classID = 1;
metrics = evaluateObjectDetection(detectionResults,testData);
precision = metrics.ClassMetrics.Precision{classID};
recall = metrics.ClassMetrics.Recall{classID};
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', metrics.ClassMetrics.mAP(classID)))
but it shows error on evaluateObjectDetection that this is not in matlab second is that it show error that dot errorr is not worked in this( metrics.ClassMetrics.Precision{classID};)
so is there any other way to find precission-recall for multiple classes
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 28 Nov. 2023
https://www.mathworks.com/help/vision/ref/evaluateobjectdetection.html was introduced in R2023b, but you have R2023a.
There are no functions available in R2023a that return metrics.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Computer Vision Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!