precision-recall curve for faster rcnn

2 Ansichten (letzte 30 Tage)
ahmad
ahmad am 27 Nov. 2023
Beantwortet: Walter Roberson am 28 Nov. 2023
hi
i want to find precision-recall curve of my tranied faster rcnn detector.i tried thi code
testData = transform(testData,@(data)preprocessData(data,inputSize));
detectionResults = detect(detector,testData,'MinibatchSize',4);
classID = 1;
metrics = evaluateObjectDetection(detectionResults,testData);
precision = metrics.ClassMetrics.Precision{classID};
recall = metrics.ClassMetrics.Recall{classID};
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', metrics.ClassMetrics.mAP(classID)))
but it shows error on evaluateObjectDetection that this is not in matlab second is that it show error that dot errorr is not worked in this( metrics.ClassMetrics.Precision{classID};)
so is there any other way to find precission-recall for multiple classes

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 28 Nov. 2023
https://www.mathworks.com/help/vision/ref/evaluateobjectdetection.html was introduced in R2023b, but you have R2023a.
There are no functions available in R2023a that return metrics.

Weitere Antworten (0)

Kategorien

Mehr zu Computer Vision Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by