How can I simplify this expression using "abs" function?

14 Ansichten (letzte 30 Tage)
Sathish
Sathish am 20 Nov. 2023
Bearbeitet: Torsten am 20 Nov. 2023
  8 Kommentare
Sathish
Sathish am 20 Nov. 2023
Thank you for your suggestions.
Walter Roberson
Walter Roberson am 20 Nov. 2023
I think in the Wolfram output that the # stand in for the variable whose value has to be found to make the expression zero

Melden Sie sich an, um zu kommentieren.

Antworten (2)

Star Strider
Star Strider am 20 Nov. 2023
This seems to work —
syms n k
Expr = 7/6 * symsum((2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^3 - k)-(k*(k+1)*(2*k+1))/6, k, 1, n-1)
Expr = 
Expr = simplify(Expr, 500)
Expr = 
.
  5 Kommentare
Dyuman Joshi
Dyuman Joshi am 20 Nov. 2023
The abs() call is inside the symsum() call.
Star Strider
Star Strider am 20 Nov. 2023
Bearbeitet: Star Strider am 20 Nov. 2023
Edited —
syms n k
Expr = symsum(abs((2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k)/6-(k*(k+1)*(2*k+1))/6), k, 1, n-1)
Expr = 
Expr = simplify(Expr, 400)
Expr = 
.

Melden Sie sich an, um zu kommentieren.


Torsten
Torsten am 20 Nov. 2023
Bearbeitet: Torsten am 20 Nov. 2023
You must determine the value for k0 where the expression
2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1)
changes sign from positive to negative. Then you can add
1/6*(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1))
from k = 1 to k = floor(k0) and add
-1/6*(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1)))
from k = floor(k0)+1 to k = n-1.
syms n k
p = simplify(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1))
p = 
s = solve(p,k,'MaxDegree',3)
s = 
result = simplify(1/6*symsum(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1),k,1,floor(s(1)))-...
1/6*symsum(2*n^3 + 3*n^2 + n - 2*k^3 - 3*k^2 - k - k*(k+1)*(2*k+1),k,floor(s(1))+1,n-1))
result = 
subs(result,n,13)
ans = 
6444
k = 1:12;
n = 13;
expr = 1/6*abs(2*n^3 + 3*n^2 + n - 2*k.^3 - 3*k.^2 - k - k.*(k+1).*(2*k+1))
expr = 1×12
817 809 791 759 709 637 539 411 249 49 193 481
sum(expr)
ans = 6444

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by