How can draw this kind of graph?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
how can we draw a velocity profile of the 3rd-order non-linear boundary value problem that converges for different values? give me code for u'''+u*u''+s*[Gr*G+Gm*H-M*u']=0 where s=0.02, Gm=10, Gr=4 and M=0.1 with boundary condition u=1,u'=0.001; G=0.001; H=0.001 when t=0 and u'=0; G-0; H=0 when t= infinity, where H=2 and G=4 within one graph for Different values of Gm
6 Kommentare
Sam Chak
am 13 Nov. 2023
@gkb, I'm confused.
You only introduced ONE differential equation in the question.
where the parameters other than the state variables u, , , are constants.
Why do F, G, and H magically appear in the context? Can we settle the first and then post another question for the system of differential equations F, G, H?
Antworten (1)
Syed Sohaib Zafar
am 19 Nov. 2023
Bearbeitet: DGM
am 20 Nov. 2023
Here's your required code
code_gkb_Matlab
%%%%%%%%%%%%%%%
function code_gkb_Matlab
global eps Gr Gm M Pr Jh Sc S0
%eq1
eps=0.001; Gr=0.5; M=0.5;
% eq2
Pr=1.4; Jh=0.3; %eps M
% eq3
Sc=0.7; S0=0.2;
val=[0.1 0.2 0.3 0.4];
for i = 1:1:4;
Gm = val(i);
solinit = bvpinit(linspace(0,6),[0 1 0 1 0 1 0]);
sol= bvp4c(@shootode,@shootbc,solinit);
eta = sol.x;
f = sol.y;
figure (1)
plot(eta,f(2,:));
xlabel( '\eta');
ylabel('\bf f'' (\eta)');
hold on
end
lgd=legend('Gm = 0.1','Gm = 0.2','Gm = 0.3','Gm = 0.4');
end
function dydx = shootode(eta,f);
global eps Gr Gm M Pr Jh Sc S0
dydx = [f(2)
f(3)
-f(1)*f(3)-eps*(Gr*f(4)+Gm*f(6)-M*f(2))
f(5)
-Pr*f(1)*f(5)+Jh*Pr*((1/eps)*f(3)^2+M*f(2)^2)
f(7)
2*Sc*f(2)*f(6)-Sc*f(1)*f(7)-S0*Sc*(-Pr*f(1)*f(5)+Jh*Pr*((1/eps)*f(3)^2+M*f(2)^2))
];
end
function res = shootbc(fa,fb)
global eps
res = [fa(1)-1; fa(2)-eps; fa(4)-eps; fa(6)-eps; fb(2)-0; fb(4)-0; fb(6)-0];
end
1 Kommentar
Siehe auch
Kategorien
Mehr zu Boundary Value Problems finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!