eci2lla altitude error?

2 Ansichten (letzte 30 Tage)
Derrick Early
Derrick Early am 7 Nov. 2023
Kommentiert: Les Beckham am 7 Nov. 2023
In the following example,
lla = eci2lla([-6.07 -1.28 0.66]*1e6,[2010 1 17 10 20 36])
lla = 1×3
1.0e+05 * 0.0001 -0.0008 -1.3940
How do you end up with a negative altitude?
The altitude should be approximately 312000 m.
  4 Kommentare
Dyuman Joshi
Dyuman Joshi am 7 Nov. 2023
"The example should yield a positive altitude."
Why? Did you calculate the values by hand and compare?
Derrick Early
Derrick Early am 7 Nov. 2023
Oops. I made an error on computing the vector normal. I used
sqrt(sum([-6.07 -1.28 0.66]*1e6).^2)
Instead of
sqrt(sum(([-6.07 -1.28 0.66]*1e6).^2))

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Les Beckham
Les Beckham am 7 Nov. 2023
Bearbeitet: Les Beckham am 7 Nov. 2023
lla = eci2lla([-6.07 -1.28 0.66]*1e6,[2010 1 17 10 20 36]);
lat = lla(1)
lat = 6.0574
lon = lla(2)
lon = -79.8476
So, this point is slightly above the Equator (by about 6 degrees)
dist = vecnorm([-6.07 -1.28 0.66]*1e6) % distance of this point from the center of the Earth
dist = 6.2385e+06
equatorialRadius = 6378e3;
dist - equatorialRadius
ans = -1.3950e+05
alt = lla(3)
alt = -1.3940e+05
So this point is beneath the surface of the Earth by about 140 kilometers (negative altitude).
  2 Kommentare
Derrick Early
Derrick Early am 7 Nov. 2023
Thank you! I messed up on computing the vector magnitude.
Les Beckham
Les Beckham am 7 Nov. 2023
You are quite welcome.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Geodesy and Mapping finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by