Solve LMIs control in delay system

3 Ansichten (letzte 30 Tage)
Hoang Vu Huy
Hoang Vu Huy am 6 Nov. 2023
I need to simulation this paper https://doi.org/10.1016/j.ifacol.2016.10.403
Find maximum to exist matrices P>0, Z>0 and Q symmetric such that
and
where
How to solve this problem? I try as follows, but it has some warning that
%% Clear
clear; clc; close;
%% Constant & Initial Condition
t = 0:0.01:20;
K = [-2 3 0; 1 1 0; -3 1 -3];
alp = [1 0.5 -1];
f = sin(t);
%% Solve LMIs
% Declare Variables
setlmis([])
A1 = diag(sign(alp))*K*diag(alp);
P = lmivar(2,[3 3]);
Z = lmivar(2,[3 3]);
Q = lmivar(1,[3 1]);
tau = 0.1;
% Definitions of the LMI
%LMI#1
lmiterm([-1 1 1 P], 1, 1); % LMI #1: P
lmiterm([-1 1 1 Z], 1, 1); % LMI #1: Z
lmiterm([-1 1 2 -Z], 1, 1); % LMI #1: -Z
lmiterm([-1 2 1 -Z], 1, 1); % LMI #1: -Z
lmiterm([-1 2 2 Q], tau,1); % LMI #1: -tau_dash*Q
lmiterm([-1 2 2 Z], 1, 1); % LMI #1: Z
%LMI#2
lmiterm([2 1 1 Q], 1, 1); % LMI #2: Q
lmiterm([2 1 1 Z], 1/tau, -1); % LMI #2: -Z/tau
lmiterm([2 2 1 P], A1', 1); %LMI #2: A1'*P
lmiterm([2 2 1 Z], 1/tau, 1); %LMI #2: Z/tau
lmiterm([2 3 1 0], 0); %LMI #2: 0
lmiterm([2 1 2 P], 1, A1 ); % LMI #2: P*A1
lmiterm([2 1 2 Z], 1/tau, 1); % LMI #2: Z/tau
lmiterm([2 2 2 Q], 1, -1); %LMI #2: -Q
lmiterm([2 2 2 Z], 1/tau, -1); %LMI #2: -Z/tau
lmiterm([2 3 2 Z], tau, A1); %LMI #2: tau*Z*A1
lmiterm([2 1 3 0], 0); % LMI #2: 0
lmiterm([2 2 3 Z], tau*A1', 1); % LMI #2: tau*A1'*Z
lmiterm([2 3 3 Z], -tau, 1); %LMI #2:
%LMI#3
lmiterm([-3 1 1 P],1,1); % LMI #3: P
%LMI#4
lmiterm([-4 1 1 Z],1,1); % LMI #4: Z
lmis = getlmis;
[tmin,xfeas] = feasp(lmis);

Antworten (0)

Kategorien

Mehr zu Linear Matrix Inequalities finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by