Fit ellipsoid to (x,y,z) data

18 Ansichten (letzte 30 Tage)
Geetartha Dutta
Geetartha Dutta am 25 Okt. 2023
Kommentiert: Geetartha Dutta am 1 Nov. 2023
I have a 3D dataset having (x,y,z) coordinates. The x and y values are equally spaced (regular grid). How can I fit an ellipsoid of the form (x-p)^2/a^2 + (y-q)^2/b^2 + (z-r)^2/c^2 , where (p,q,r) are the coordinates of the center of the ellipsoid, and a,b,c are the radii?
  7 Kommentare
Matt J
Matt J am 26 Okt. 2023
Bearbeitet: Matt J am 26 Okt. 2023
I know that there seems to be two modes in the data
Looks like a lot more than that. I can't tell which is supposed to be the "greater" mode. In any case, if you want a good fit in a particular region, you will have to prune the data to exclude the other regions.
Geetartha Dutta
Geetartha Dutta am 26 Okt. 2023
Attached is the pruned data. It would be great if I could get a reasonably good fit to this data.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Matt J
Matt J am 26 Okt. 2023
Bearbeitet: Matt J am 26 Okt. 2023
I'm finding that a decent fitting strategy is to first fit with a Gaussian, but then use the parameters of the Gaussian to construct an ellipsoid hemisphere. For the Gaussian fitting, I used gaussfitn, which is downloadable from,
load xyz
[maxval,i]=max(z(:));
mu0=[x(i);y(i)];
D0=min(z(:));
opts={'FunctionTolerance',1e-14, 'OptimalityTolerance',1e-14, 'StepTolerance',1e-14};
G0={D0,maxval-D0,mu0,100*eye(2)};
LB={0,0,[],[]};
UB={D0,maxval,[],[]};
G = gaussfitn([x(:),y(:)],z(:),G0,LB,UB,opts{:});
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
%Disaply surfaces
[Zg,Ze]=getSurf(x,y,G);
surf(x,y,z,'FaceAlpha',0.5,'FaceColor','b');
surface(x,y,Ze,'FaceColor','r'); xlabel X, ylabel Y
legend('Raw Data','Fit')
function [Zg,Ze]=getSurf(x,y,G)
[D,A,mu,sig]=deal(G{:});
sz=size(x);
xy=[x(:),y(:)]'-mu;
Zg=D+A*exp(-0.5*sum( (sig\xy).*xy,1)); Zg=reshape(Zg,sz); %Gaussian Fit
Ze=D+A*sqrt(1-sum( (sig\xy).*xy)); Ze=reshape(Ze,sz); %Ellipsoid Fit
end
  6 Kommentare
Matt J
Matt J am 31 Okt. 2023
Bearbeitet: Matt J am 31 Okt. 2023
You should set the complex values to NaN. They correspond to (x,y) outside the footprint of the ellipsoid.
Geetartha Dutta
Geetartha Dutta am 1 Nov. 2023
I see, thanks!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (2)

Torsten
Torsten am 25 Okt. 2023

Matt J
Matt J am 26 Okt. 2023
Bearbeitet: Matt J am 26 Okt. 2023
Using quadricFit from,
%%%%%%%%%%%Fake input data
[X,Y,Z] = sphere;
[X,Y,Z]=deal(1+40*X, 2+20*Y,3+30*Z); %stretch into an ellipsoid
surf(X,Y,Z); axis equal
%%%%%%%%%%% Do the fit
XYZ=[X(:),Y(:),Z(:)]';
[XYZ,T]=quadricFit.homogNorm(XYZ);
X=XYZ(1,:).';
Y=XYZ(2,:).';
Z=XYZ(3,:).';
e=+ones(size(X,1),1);
M= [X.^2, [], [], X, ...
Y.^2, [], Y, ...
Z.^2 Z, ...
e];
coeffs=quadricFit.mostnull(M);
ABCDEFGHIJ=zeros(1,10);
ABCDEFGHIJ([1,4,5,7:10])=coeffs;
ABCDEFGHIJ=num2cell(ABCDEFGHIJ);
[A,B,C,D,E,F,G,H,I,J]=deal(ABCDEFGHIJ{:});
Q=[A, B, C; %D
0 E, F; %G
0 0 H];%I
%J
Q=Q/2+Q.'/2;
W=T.'*[Q,[D;G;I]/2;[D,G,I]/2,J]*T;
Q=W(1:3,1:3);
x0=-Q\W(1:3,end);
T=eye(4); T(1:3,4)=x0;
W=T.'*W*T; W=-W/W(end);
rad=sqrt(1./diag(W(1:3,1:3)));
[a,b,c]=deal(rad(1),rad(2),rad(3)) %ellipsoid radii
a = 40.0000
b = 20
c = 30.0000
[p,q,r]=deal(x0(1),x0(2),x0(3)) %ellipsoid center coordinates
p = 1.0000
q = 2.0000
r = 3.0000
  2 Kommentare
Geetartha Dutta
Geetartha Dutta am 26 Okt. 2023
I tried the above code using my data, and it gives complex values for a and b. I am not sure why.
Matt J
Matt J am 26 Okt. 2023
Attach your xyz data in a .mat file, so it can be examined.

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Curve Fitting Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by