How to plot the best fitted ellipse or circle?

23 Ansichten (letzte 30 Tage)
Ashfaq Ahmed
Ashfaq Ahmed am 24 Okt. 2023
Bearbeitet: Matt J am 25 Okt. 2023
Hi all,
I have a data set (attached here) that has two arrays. I want to plot them in a polar graph and want to find out the best fitted a) ellipse, and b) circle.
x(:,1) is the x and x(:,2) is the y for the plot.
If anyone can help me out here, I will be very grateful.
xy = load("EllipseData.mat");
x = xy.x(:,1);
y = xy.x(:,2);
plot(x,y,'o')
axis equal
  5 Kommentare
Ashfaq Ahmed
Ashfaq Ahmed am 25 Okt. 2023
Bearbeitet: Ashfaq Ahmed am 25 Okt. 2023
Hi @Image Analyst, the secoond option. It would be if they are plotted in the polarplot first and then creating the ellipsoid.
Image Analyst
Image Analyst am 25 Okt. 2023
I see you accepted @Matt J's answer. You can adjust/control the approximate number of points within the ellipse by changing the 0.95 in this line of code:
b=boundary(XY,0.95);

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Matt J
Matt J am 25 Okt. 2023
Bearbeitet: Matt J am 25 Okt. 2023
The code below uses ellipsoidalFit() from this FEX download,
Is this the kind of thing you are looking for?
xy=load('EllipseData.mat').x;
p=prunecloud(xy);
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
I=all(~isnan(p.Vertices),2);
e=ellipticalFit(p.Vertices(I,:)');
%Display -- EDITED
XY=e.sample(linspace(0,360,1000));
[t,r]=cart2pol(xy(:,1),xy(:,2));
[T,R]=cart2pol(XY{:});
polarplot(t,r,'ob',T,R,'r-')
function [p,XY]=prunecloud(xy)
for i=1:3
D2=max(pdist2(xy,xy,'euclidean','Smallest', 10),[],1);
xy(D2>0.1,:)=[];
end
XY=xy;
b=boundary(XY,0.95);
p=polyshape(XY(b,:));
end
  4 Kommentare
Ashfaq Ahmed
Ashfaq Ahmed am 25 Okt. 2023
Hi @Matt J, thank you for the suggestion. I can see it is working now. I have a request. Can you please help me plot it on a polar plane?
Matt J
Matt J am 25 Okt. 2023
Bearbeitet: Matt J am 25 Okt. 2023
See my edited answer.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (3)

Image Analyst
Image Analyst am 24 Okt. 2023

Torsten
Torsten am 24 Okt. 2023
Bearbeitet: Torsten am 24 Okt. 2023
  1. Compute the center of gravity of the point cloud. Call it (x',y').
  2. Compute the point of your point cloud with the greatest distance to (x',y'). Call the distance R.
  3. Define the circle that encloses the point cloud by (x-x')^2 + (y-y')^2 = R^2.
  6 Kommentare
Image Analyst
Image Analyst am 25 Okt. 2023
I moved @Les Beckham's comment to be an answer.

Melden Sie sich an, um zu kommentieren.


Les Beckham
Les Beckham am 25 Okt. 2023
Verschoben: Image Analyst am 25 Okt. 2023
xy = load("EllipseData.mat");
x = xy.x(:,1);
y = xy.x(:,2);
rho = sqrt(x.^2 + y.^2);
theta = atan2(y,x); % <<< use 4 quadrant atan2
polarplot(theta, rho, '.', 'markersize', 3, 'Color', '#aa4488')

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by