Tune PI Controller Using Reinforcement Learning
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
嘻嘻
am 18 Okt. 2023
Beantwortet: Emmanouil Tzorakoleftherakis
am 23 Okt. 2023
How is the initial value of the weight of this neural network determined? If I want to change my PI controller to a PID controller, do I just add another weight to this row that is initialGain = single([1e-3 2])?
This code is from the demo "Tune PI Controller Using Reinforcement Learning."
initialGain = single([1e-3 2]);
actorNet = [
featureInputLayer(numObs)
fullyConnectedPILayer(initialGain,'ActOutLyr')
];
actorNet = dlnetwork(actorNet);
actor = rlContinuousDeterministicActor(actorNet,obsInfo,actInfo);
Can my network be changed to look like the following:
actorNet= [
featureInputLayer(numObs)
fullyConnectedPILayer(randi([-60,60],1,3), 'Action')]
3 Kommentare
Akzeptierte Antwort
Emmanouil Tzorakoleftherakis
am 23 Okt. 2023
I also replied to the other thread. The fullyConnectedPILayer is a custom layer provided in the example - you can open it and see how it's implemented. So you can certainly add a third weight for the D term, but you will most likely run into other issues (e.g. how to approximate the error derivative)
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Function Approximation and Clustering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!