how to get PointNet network (no pointnet++) Layers?

3 Ansichten (letzte 30 Tage)
mohammad
mohammad am 10 Okt. 2023
Bearbeitet: Venu am 27 Dez. 2023
Hi everybody
I train pointnet network in this matlab example:
But I can't use this network in my work.
I need a MATLAB net (series network or DAG network) to be used in "DeepLearning HDL ToolBox Support Package For Xilinx FPGA And SoC Device".
Or a version of PointNet open with "DeepNetworksDesigner".
Note: Only PointNet is required, it is not possible to use PointNetPlusPlus.

Antworten (1)

Venu
Venu am 27 Dez. 2023
Bearbeitet: Venu am 27 Dez. 2023
I can suggest you a series network based on https://de.mathworks.com/help/vision/ug/point-cloud-classification-using-pointnet-deep-learning.html this documentation. But this is just a simplified example and should be adjusted to match your specific PointNet architecture.
% Define the layers for the PointNet model
inputLayer = imageInputLayer([3, 1, 1], 'Name', 'input', 'Normalization', 'none');
convLayer1 = convolution2dLayer(64, 1, 'Name', 'conv1', 'Padding', 'same');
convLayer2 = convolution2dLayer(64, 1, 'Name', 'conv2', 'Padding', 'same');
maxPoolLayer = maxPooling2dLayer([3, 1], 'Stride', [2, 1], 'Name', 'maxpool');
fullyConnectedLayer1 = fullyConnectedLayer(128, 'Name', 'fc1');
fullyConnectedLayer2 = fullyConnectedLayer(10, 'Name', 'fc2');
softmaxLayer = softmaxLayer('Name', 'softmax');
classificationLayer = classificationLayer('Name', 'classoutput');
% Assemble the layers into a Layer Graph
lgraph = layerGraph([inputLayer, convLayer1, reluLayer, convLayer2, reluLayer, maxPoolLayer, fullyConnectedLayer1, reluLayer, fullyConnectedLayer2, softmaxLayer, classificationLayer]);
% Convert the Layer Graph to a Series Network
net = assembleNetwork(lgraph);

Kategorien

Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by