Cone fitting in Matlab
18 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to fit data points based on cone fitting. I have developed a code but there is an error that is always coming up:
Pixel_coordinates_of_the_inside_vortex
Error using lsqcurvefit
Function value and YDATA sizes are not equal.
Error in Pixel_coordinates_of_the_inside_vortex (line 20)
paramsFit = lsqcurvefit(@(params, xy) coneEquation(params, xy), initialGuess, xyData, z);
My code is:
theta = linspace(0, 2*pi, 100);
r = linspace(0, 5, 100);
z = linspace(0, 10, 100);
xData = r .* cos(theta);
yData = r .* sin(theta);
% Define the cone equation as a function
coneEquation = @(params, xy) sqrt(xy(:,1).^2 + xy(:,2).^2) * tan(params(1)) - params(2);
% Initial guess for parameters (angle and height)
initialGuess = [pi/4, 5];
% Concatenate xData and yData into a single matrix
xyData = [xData(:), yData(:)];
% Fit the cone equation to the data using lsqcurvefit
paramsFit = lsqcurvefit(@(params, xy) coneEquation(params, xy), initialGuess, xyData, z);
% Extract the fitted parameters
angle = paramsFit(1);
height = paramsFit(2);
% Display the equation of the fitted cone
fprintf('Fitted Cone Equation: sqrt(x^2 + y^2) * tan(%.4f) = %.4f\n', angle, height);
% Create a grid of points for the fitted cone plot
[X, Y] = meshgrid(linspace(min(xData), max(xData), 100), linspace(min(yData), max(yData), 100));
XY = [X(:), Y(:)]; % Concatenate X and Y into a single matrix
Z = sqrt(X.^2 + Y.^2) * tan(angle);
% Plot the data points and the fitted cone surface
figure;
scatter3(xData, yData, z, 'o', 'filled');
hold on;
surf(X, Y, Z, 'FaceAlpha', 0.5);
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Cone Curve Fitting');
hold off;
0 Kommentare
Akzeptierte Antwort
Weitere Antworten (1)
Walter Roberson
am 29 Sep. 2023
Verschoben: Walter Roberson
am 29 Sep. 2023
theta = linspace(0, 2*pi, 100);
r = linspace(0, 5, 100);
z = linspace(0, 10, 100);
xData = r .* cos(theta);
yData = r .* sin(theta);
% Define the cone equation as a function
coneEquation = @(params, xy) sqrt(xy(:,1).^2 + xy(:,2).^2) * tan(params(1)) - params(2);
% Initial guess for parameters (angle and height)
initialGuess = [pi/4, 5];
% Concatenate xData and yData into a single matrix
xyData = [xData(:), yData(:)];
% Fit the cone equation to the data using lsqcurvefit
paramsFit = lsqcurvefit(@(params, xy) coneEquation(params, xy), initialGuess, xyData, z(:));
% Extract the fitted parameters
angle = paramsFit(1);
height = paramsFit(2);
% Display the equation of the fitted cone
fprintf('Fitted Cone Equation: sqrt(x^2 + y^2) * tan(%.4f) = %.4f\n', angle, height);
% Create a grid of points for the fitted cone plot
[X, Y] = meshgrid(linspace(min(xData), max(xData), 100), linspace(min(yData), max(yData), 100));
XY = [X(:), Y(:)]; % Concatenate X and Y into a single matrix
Z = sqrt(X.^2 + Y.^2) * tan(angle);
% Plot the data points and the fitted cone surface
figure;
scatter3(xData, yData, z, 'o', 'filled');
hold on;
surf(X, Y, Z, 'FaceAlpha', 0.5);
xlabel('X');
ylabel('Y');
zlabel('Z');
title('Cone Curve Fitting');
hold off;
0 Kommentare
Siehe auch
Kategorien
Mehr zu Data Distribution Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!