How to detect data that does not follow a bell curve?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello everyone!
I have significantly large dataset and I need to detect which data does not follow a gaussian distribution or bell curve (see screenshots). I have tried using several tests such as kstest, lillietest, etc but for some reason, these tests do not work for me. I have tried using the histcounts function for visualizing the data distribution that you see in the screenshots. Any insights would be appreciated.
[N1,edges1,bin1] = histcounts(normal);
plot(N1)
[N2,edges2,bin2] = histcounts(abnormal);
plot(N2)
0 Kommentare
Akzeptierte Antwort
Sam Chak
am 14 Sep. 2023
Hi @Miguel
Not sure if you can try it this way to compare the R-square value. Data that follows the bell curve tends to have a high R-squared value close to 1. Data that does not follow the bell curve usually have relatively low R-squared values.
load('normal.mat');
[N1,edges1,bin1] = histcounts(normal);
x1 = 1:length(N1);
[fitobject1, gof1] = fit(x1', N1', 'gauss1')
load('abnormal.mat');
[N2,edges2,bin2] = histcounts(abnormal);
x2 = 1:length(N2);
[fitobject2, gof2] = fit(x2', N2', 'gauss1')
subplot(211)
plot(N1), grid on, title('N_{1} follows Bell curve')
subplot(212)
plot(N2), grid on, title('N_{2} does not follows Bell curve')
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Spline Postprocessing finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!