The value of 'ValidationData' is invalid. Duplicate table variable name: 'input'. error during neural network training
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
기태 김
am 13 Sep. 2023
Beantwortet: Joss Knight
am 13 Sep. 2023
I want to train an autoencoder that copies the input image.
I used augmentedImageDatastore for image resizing, then combined two augmentedImageDatastore to use as input and responses using the 'combine' function for the autoencoder.
However, If i run the code below, I see the error message:
The value of 'ValidationData' is invalid. Duplicate table variable name: 'input'.
I checked the 'combine' function for 'ImageDatastore' work well but I am not sure why it is not work for 'augmentedImageDatastore'.
Thank you for your help.
digitDatasetPath = fullfile("my path");
imds = imageDatastore(digitDatasetPath, ...
IncludeSubfolders=true,LabelSource="foldernames");
imds.ReadSize = 1024;
imds = shuffle(imds);
[imdsTrain,imdsVal,imdsTest] = splitEachLabel(imds,0.95,0.025);
% Create augmented datastores for input and response
augmentedTrainInput = augmentedImageDatastore([224,224,3], imdsTrain);
augmentedTrainOutput = augmentedImageDatastore([224,224,3], imdsTrain);
augmentedValInput = augmentedImageDatastore([224,224,3], imdsVal);
augmentedValOutput = augmentedImageDatastore([224,224,3], imdsVal);
augmentedTestInput = augmentedImageDatastore([224,224,3], imdsTest);
augmentedTestOutput = augmentedImageDatastore([224,224,3], imdsTest);
% Combine the augmented datastores for input and response
dsTrain = combine(augmentedTrainInput, augmentedTrainOutput);
dsVal = combine(augmentedValInput, augmentedValOutput);
dsTest = combine(augmentedTestInput, augmentedTestOutput);
% Define the network layers
imageLayer = imageInputLayer([224,224,3]);
encodingLayers = [ ...
convolution2dLayer(3,8,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2), ...
convolution2dLayer(3,16,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2), ...
convolution2dLayer(3,32,Padding="same"), ...
reluLayer, ...
maxPooling2dLayer(2,Padding="same",Stride=2)];
decodingLayers = [ ...
transposedConv2dLayer(2,32,Stride=2), ...
reluLayer, ...
transposedConv2dLayer(2,16,Stride=2), ...
reluLayer, ...
transposedConv2dLayer(2,8,Stride=2), ...
reluLayer, ...
convolution2dLayer(1,3,Padding="same"), ...
clippedReluLayer(1.0), ...
regressionLayer];
layers = [imageLayer,encodingLayers,decodingLayers];
options = trainingOptions("adam", ...
MaxEpochs=50, ...
MiniBatchSize=imds.ReadSize, ...
ValidationData=dsVal, ...
ValidationPatience=5, ...
Plots="training-progress", ...
OutputNetwork="best-validation-loss", ...
ExecutionEnvironment="multi-gpu", ...
DispatchInBackground=true,...
Verbose=true);
net = trainNetwork(dsTrain,layers,options);
modelDateTime = string(datetime("now",Format="yyyy-MM-dd-HH-mm-ss"));
save("trainedImageToImageRegressionNet-"+modelDateTime+".mat","net");
ypred = predict(net,dsTest);
testBatch = preview(dsTest);
idx = 1;
y = ypred(:,:,:,idx);
x = testBatch{idx,1};
ref = testBatch{idx,2};
montage({x,y});
0 Kommentare
Akzeptierte Antwort
Joss Knight
am 13 Sep. 2023
augmentedImageDatastore returns a table so cannot be trivially combined. You should first transform it to convert it into a cell array of just the input values.
>> amds = augmentedImageDatastore([224,224,3],digitDatastore);
>> read(amds)
ans =
128×2 table
input response
_______________ ________
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
{224×224 uint8} 0
: :
Display all 128 rows.
>> amds = transform(augmentedImageDatastore([224,224,3],digitDatastore), @(t)t.input);
>> read(amds)
ans =
128×1 cell array
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
{224×224 uint8}
:
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!