I want 4 solid lines for Fr paramter . but im getting single line why?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
farooq omer
am 13 Sep. 2023
Kommentiert: farooq omer
am 13 Sep. 2023
function S_a
clc
clear All
%%%%note%%%%%%%%%
%%%%%%%%%%%%%%%%% decreasing behaviour with Fr=0.4,0.8,1.2,1.6,2 %%%%%%%%%%%
global Fr Pr f2 f1 F2 shi2 shi3 lambda zeta Sk u Re Kf B A H1 H2 H3 C1 C2 C3 P1 P2 P3 K1 K2 K3 Kb n Z FR
FR = 0.4:0.4:2
for i=1:numel(FR)
Fr = FR(i); %variation paramter
end
Pr = 6.2 ;
B = 0.9;
F2 = 0:0.01:0.15
for i=1:numel(F2)
f2 = F2(i);
f1 = 0.05 ;
lambda = 0.4;
zeta=0.5;
A= 0.7;
n=3.7;
Re=0.3;
C1=765;
P1=3970;
K1=40;
%%%%%%%%%%%%%%%%%%%%%%%
C2=385; % specific heat
P2=8933; % density
K2=400; % thermal conductivity
%%%%%%%%%%% %%%%%%%%%%%%
C3=4180; % specific heat
P3=997.1; % density
K3=0.6071; % thermal conductivity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%
Z=zeta+B;
H1=P1*C1; % pho*cp nanoparticle 1
H2=P2*C2; % pho*cp nanoparticle 2
H3=P3*C3; % pho*cp base fluid
Kb = (K2 + (n - 1)*K3 - f2*(n - 1)*(K3 - K2))/(K2 + (n - 1)*K3 + f2*(K3 - K2)); % khnf/kbf
Kf=((K2 + (n - 1)*K3 - f2*(n - 1)*(K3 - K2))/(K2 + (n - 1)*K3 + f2*(K3 - K2)))*((K1 + (n - 1)*K3 - f1*(n - 1)*(K3 - K1))/(K1 + (n - 1)*K3 + f1*(K3 - K1)));
% khnf/kf
shi2=(((1 - f1)^2.5)*((1 - f2)^2.5))*(((1 - f1)*(1 - f2))+f1*(P1/P3)) + f2*(P2/P3) ;
% shi2 in velocity equation
shi3=(1 - f2)*((1 - f1) + f1*((H1)/(H3))) + f2*((H2)/(H3));
u=1/((1-f1)^2.5);
options = bvpset('RelTol',1e-6,'Stats','off') ;
solinit = bvpinit(linspace(0,5,10),[1; 0 ;0 ;0 ;0; 0]);
sol = bvp4c(@odes,@bcs,solinit,options);
Sk(i)=u*1/((Re)^0.5)*(sol.y(3,1)-sol.y(2,1)/B);
end
plot(F2,Sk,'-y')
%--------------------------------------------------------------------------
function dydx = odes(~,y)
% global zeta Pr psi2 psi3 k B Fr A
dydx = zeros(6,1);
dydx(1) = y(2); % y(1)=f
dydx(2) = y(3);
dydx(3) = y(4);
dydx(4) = -(2/(zeta+B)*y(4))+(1/((zeta+B)^2)*y(3))-(1/((zeta+B)^3)*y(2))+2*lambda*(y(3)+(1/(zeta+B)*y(2)))+shi2*(-((B/(zeta+B)^2)*y(1)*y(3))-((B/(zeta+B)*y(1)*y(4)))+(B/((zeta+B)^3)*y(1)*y(2))+(3*B/((zeta+B)^2)*y(2)*y(2))+(3*B/((zeta+B)^2)*y(2)*y(3))+2*Fr*(2*y(2)*y(3)+((1/(zeta+B))*y(2)*y(2))));
dydx(5) = y(6); % y(5)=theta
dydx(6) = -(1/(zeta+B))*y(6)-((Pr*shi3*B)/(Kb*(zeta+B)))*(y(1)*y(6)-A*y(2)*y(5));% k=khnf/kbf
%--------------------------------------------------------------------------
end
function res = bcs(ya,yb)
res = [ya(1); ya(2)-1;ya(5)-1; yb(2); yb(3); yb(5)];
end
%%%%%%%%%%%%2nd%%%%%%%%%%%%%
Fr = 0.8;
Pr = 6.2 ;
B = 0.9;
F2 = 0:0.01:0.15
for i=1:numel(F2)
f2 = F2(i);
f1 = 0.05 ;
lambda = 0.4;
zeta=0.5;
A= 0.7;
n=3.7;
Re=0.3;
C1=765;
P1=3970;
K1=40;
%%%%%%%%%%%%%%%%%%%%%%%
C2=385; % specific heat
P2=8933; % density
K2=400; % thermal conductivity
%%%%%%%%%%% %%%%%%%%%%%%
C3=4180; % specific heat
P3=997.1; % density
K3=0.6071; % thermal conductivity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%
Z=zeta+B;
H1=P1*C1; % pho*cp nanoparticle 1
H2=P2*C2; % pho*cp nanoparticle 2
H3=P3*C3; % pho*cp base fluid
Kb = (K2 + (n - 1)*K3 - f2*(n - 1)*(K3 - K2))/(K2 + (n - 1)*K3 + f2*(K3 - K2)); % khnf/kbf
Kf=((K2 + (n - 1)*K3 - f2*(n - 1)*(K3 - K2))/(K2 + (n - 1)*K3 + f2*(K3 - K2)))*((K1 + (n - 1)*K3 - f1*(n - 1)*(K3 - K1))/(K1 + (n - 1)*K3 + f1*(K3 - K1)));
% khnf/kf
shi2=(((1 - f1)^2.5)*((1 - f2)^2.5))*(((1 - f1)*(1 - f2))+f1*(P1/P3)) + f2*(P2/P3) ;
% shi2 in velocity equation
shi3=(1 - f2)*((1 - f1) + f1*((H1)/(H3))) + f2*((H2)/(H3));
u=1/((1-f1)^2.5);
options1 = bvpset('RelTol',1e-6,'Stats','off') ;
solinit1 = bvpinit(linspace(0,5,10),[1; 0 ;0 ;0 ;0; 0]);
sol = bvp4c(@odes1,@bcs1,solinit1,options1);
Sk(i)=u*1/((Re)^0.5)*(sol.y(3,1)-sol.y(2,1)/B);
end
plot(F2,Sk,'--r')
%--------------------------------------------------------------------------
function dydx = odes1(~,y)
% global zeta Pr psi2 psi3 k B Fr A
dydx = zeros(6,1);
dydx(1) = y(2); % y(1)=f
dydx(2) = y(3);
dydx(3) = y(4);
dydx(4) = -(2/(zeta+B)*y(4))+(1/((zeta+B)^2)*y(3))-(1/((zeta+B)^3)*y(2))+2*lambda*(y(3)+(1/(zeta+B)*y(2)))+shi2*(-((B/(zeta+B)^2)*y(1)*y(3))-((B/(zeta+B)*y(1)*y(4)))+(B/((zeta+B)^3)*y(1)*y(2))+(3*B/((zeta+B)^2)*y(2)*y(2))+(3*B/((zeta+B)^2)*y(2)*y(3))+2*FR(i)*(2*y(2)*y(3)+((1/(zeta+B))*y(2)*y(2))));
dydx(5) = y(6); % y(5)=theta
dydx(6) = -(1/(zeta+B))*y(6)-((Pr*shi3*B)/(Kb*(zeta+B)))*(y(1)*y(6)-A*y(2)*y(5));% k=khnf/kbf
%--------------------------------------------------------------------------
end
function res = bcs1(ya,yb)
res = [ya(1); ya(2)-1;ya(5)-1; yb(2); yb(3); yb(5)];
end
end
2 Kommentare
Akzeptierte Antwort
Torsten
am 13 Sep. 2023
Bearbeitet: Torsten
am 13 Sep. 2023
S_a()
function S_a
%%%%note%%%%%%%%%
%%%%%%%%%%%%%%%%% decreasing behaviour with Fr=0.4,0.8,1.2,1.6,2 %%%%%%%%%%%
FR = 0.4:0.4:2;
F2 = 0:0.01:0.15;
Pr = 6.2 ;
B = 0.9;
f1 = 0.05 ;
lambda = 0.4;
zeta=0.5;
A= 0.7;
n=3.7;
Re=0.3;
C1=765;
P1=3970;
K1=40;
%%%%%%%%%%%%%%%%%%%%%%%
C2=385; % specific heat
P2=8933; % density
K2=400; % thermal conductivity
%%%%%%%%%%% %%%%%%%%%%%%
C3=4180; % specific heat
P3=997.1; % density
K3=0.6071; % thermal conductivity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%
Z=zeta+B;
H1=P1*C1; % pho*cp nanoparticle 1
H2=P2*C2; % pho*cp nanoparticle 2
H3=P3*C3; % pho*cp base fluid
hold on
for j=1:numel(FR)
Sk = zeros(size(F2));
Fr = FR(j); %variation paramter
for i=1:numel(F2)
f2 = F2(i);
Kb = (K2 + (n - 1)*K3 - f2*(n - 1)*(K3 - K2))/(K2 + (n - 1)*K3 + f2*(K3 - K2)); % khnf/kbf
Kf=((K2 + (n - 1)*K3 - f2*(n - 1)*(K3 - K2))/(K2 + (n - 1)*K3 + f2*(K3 - K2)))*((K1 + (n - 1)*K3 - f1*(n - 1)*(K3 - K1))/(K1 + (n - 1)*K3 + f1*(K3 - K1)));
% khnf/kf
shi2=(((1 - f1)^2.5)*((1 - f2)^2.5))*(((1 - f1)*(1 - f2))+f1*(P1/P3)) + f2*(P2/P3) ;
% shi2 in velocity equation
shi3=(1 - f2)*((1 - f1) + f1*((H1)/(H3))) + f2*((H2)/(H3));
u=1/((1-f1)^2.5);
options = bvpset('RelTol',1e-6,'Stats','off') ;
solinit = bvpinit(linspace(0,5,10),[1; 0 ;0 ;0 ;0; 0]);
sol = bvp4c(@odes,@bcs,solinit,options);
Sk(i)=u*1/((Re)^0.5)*(sol.y(3,1)-sol.y(2,1)/B);
end
plot(F2,Sk,'-y')
end
hold off
%--------------------------------------------------------------------------
function dydx = odes(~,y)
% global zeta Pr psi2 psi3 k B Fr A
dydx = zeros(6,1);
dydx(1) = y(2); % y(1)=f
dydx(2) = y(3);
dydx(3) = y(4);
dydx(4) = -(2/(zeta+B)*y(4))+(1/((zeta+B)^2)*y(3))-(1/((zeta+B)^3)*y(2))+2*lambda*(y(3)+(1/(zeta+B)*y(2)))+shi2*(-((B/(zeta+B)^2)*y(1)*y(3))-((B/(zeta+B)*y(1)*y(4)))+(B/((zeta+B)^3)*y(1)*y(2))+(3*B/((zeta+B)^2)*y(2)*y(2))+(3*B/((zeta+B)^2)*y(2)*y(3))+2*Fr*(2*y(2)*y(3)+((1/(zeta+B))*y(2)*y(2))));
dydx(5) = y(6); % y(5)=theta
dydx(6) = -(1/(zeta+B))*y(6)-((Pr*shi3*B)/(Kb*(zeta+B)))*(y(1)*y(6)-A*y(2)*y(5));% k=khnf/kbf
%--------------------------------------------------------------------------
end
function res = bcs(ya,yb)
res = [ya(1); ya(2)-1;ya(5)-1; yb(2); yb(3); yb(5)];
end
end
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Heat and Mass Transfer finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
