When I use fmincon, the optimised result does not satisfy my non liner constraints
21 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
clear variables
close all
clc
fun = @(x)4*x(1)+x(2);
x0=[0.4,0.28]
lb = [0.01,0.01];
ub = [5,0.8];
A = [];
b = [];
Aeq = [];
beq = [];
options = optimoptions('fmincon','Algorithm','sqp');
c = @(x)(4+4*x(1)+9*x(1)^2)*(1+x(1))^2-(2*x(1)^3*x(2)+2+3*x(1)+3*x(1)^2)^2+0.001;
nonlcon = @(x)deal(c(x),[]);
[x,fval,exitflag,output] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
exitflag
checkinitialpoint=(4+4*x0(1)+9*x0(1)^2)*(1+x0(1))^2-(2*x0(1)^3*x0(2)+2+3*x0(1)+3*x0(1)^2)^2+0.001;
checkconstraits=(4+4*x(1)+9*x(1)^2)*(1+x(1))^2-(2*x(1)^3*x(2)+2+3*x(1)+3*x(1)^2)^2+0.001;
The above is my matlab code, I input the nonlear constraints, but the results give to me is obviously not satisfy the constraints (you can see that checkconstraits is positive), my initial point is within the range.
Can anyone help me? Many thanks.
1 Kommentar
Torsten
am 29 Aug. 2023
The solver converged to an infeasible point (see above). Your observation is the same as the exitflag from "fmincon" indicates.
Antworten (2)
Alan Weiss
am 29 Aug. 2023
You would do better to use the default 'interior-point' algorithm, which arrives at a feasible solution.
fun = @(x)4*x(1)+x(2);
x0=[0.4,0.28];
lb = [0.01,0.01];
ub = [5,0.8];
A = [];
b = [];
Aeq = [];
beq = [];
% options = optimoptions('fmincon','Algorithm','sqp');
c = @(x)(4+4*x(1)+9*x(1)^2)*(1+x(1))^2-(2*x(1)^3*x(2)+2+3*x(1)+3*x(1)^2)^2+0.001;
nonlcon = @(x)deal(c(x),[]);
[x,fval,exitflag,output] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
Alan Weiss
MATLAB mathematical toolbox documentation
Matt J
am 29 Aug. 2023
Bearbeitet: Matt J
am 29 Aug. 2023
Since it is a 2D problem, it practically begs you to pre-sweep for a good initial guess:
fun = @(x)4*x(1)+x(2);
lb = [0.01,0.01];
ub = [5,0.8];
A = [];
b = [];
Aeq = [];
beq = [];
c = @(x)(4+4*x(1)+9*x(1)^2)*(1+x(1))^2-(2*x(1)^3*x(2)+2+3*x(1)+3*x(1)^2)^2+0.001;
nonlcon = @(x)deal(c(x),[]);
[x0,fval0]=sweep(fun,c,lb,ub)
options = optimoptions('fmincon','Algorithm','sqp');
[x,fval,exitflag,output] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options);
x,fval
function [x0,fval]=sweep(fun,c,lb,ub)
F=@(x1,x2) fun([x1,x2])+eps./(c([x1,x2])<=0);
[X1,X2]=ndgrid(linspace(lb(1),ub(1),30), linspace(lb(2),ub(2),30));
v=arrayfun(F,X1,X2);
[fval,i]=min(v(:));
if ~isfinite(fval)
disp 'No feasible point found'; x0=[];
else
x0=[X1(i),X2(i)];
end
end
2 Kommentare
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!