Counting zeros which are lying between nonzero elements by considering consecutive zeros as a single element in a matrix

1 Ansicht (letzte 30 Tage)
I have a (4x8) matrix as
A=[1 0 1 1 1 0 0 1;0 1 0 1 1 0 1 0;0 0 1 0 0 0 0 0;1 0 1 1 0 0 1 1]
A = 4×8
1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1
I want to calculate the number of only those zeros that are lying between nonzero elements i.e 1 in each row in such a way that I want to consider only the consecutive zeros as a single element. Single zeros will be considered as a separate element. Desired Output is (2 2 0 2). How to do so?

Antworten (5)

Mahdi Hayati
Mahdi Hayati am 27 Aug. 2023
Hi.
you can use diff() function to find number of times that elements of each row, turn from 1 to 0. for example for the first row we can have:
D = diff(A(1,:));
temp = size(find(D == -1));
number_of_turns = temp(1);
if D(7) == -1
number_of_turns = number_of_turns - 1;
end
number_of_turns
in this code, I found how many times zeros are stuck between ones. The 'if' statement is because if the last element of the row is 0, it must not be count.
I hope it was useful

Bruno Luong
Bruno Luong am 27 Aug. 2023
Bearbeitet: Bruno Luong am 27 Aug. 2023
A=[1 0 1 1 1 0 0 1;0 1 0 1 1 0 1 0;0 0 1 0 0 0 0 0;1 0 1 1 0 0 1 1]
A = 4×8
1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1
d=diff(A~=0,1,2);
[~,i,v]=find(d');
vl=zeros(size(A,1),1);
vl(i)=v;
sum(d==-1,2)-(vl==-1)
ans = 4×1
2 2 0 2

Bruno Luong
Bruno Luong am 27 Aug. 2023
Always helpful the old for-loop
A=[1 0 1 1 1 0 0 1;0 1 0 1 1 0 1 0;0 0 1 0 0 0 0 0;1 0 1 1 0 0 1 1]
A = 4×8
1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1
[m,n] = size(A);
count = zeros(m,1);
for i = 1:m
s0startded = false;
c = 0;
isprevnull = A(i,1) == 0;
for j = 2:n
isnull = A(i,j) == 0;
if s0startded
if ~isnull
c = c+1;
s0startded = false;
end
else
s0startded = isnull && ~isprevnull;
end
isprevnull = isnull;
end
count(i) = c;
end
count
count = 4×1
2 2 0 2

Matt J
Matt J am 27 Aug. 2023
Bearbeitet: Matt J am 27 Aug. 2023
A=[1 0 1 1 1 0 0 1;0 1 0 1 1 0 1 0;0 0 1 0 0 0 0 0;1 0 1 1 0 0 1 1]
A = 4×8
1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1
d=diff(A,1,2);
result= max(0, min( sum(d==-1,2) - ~A(:,end), sum(d==1,2) - ~A(:,1) ))
result = 4×1
2 2 0 2
  4 Kommentare
Bruno Luong
Bruno Luong am 27 Aug. 2023
Bearbeitet: Bruno Luong am 27 Aug. 2023
It seems not correct with A contains only 0
A = [0 0 0 0]
A = 1×4
0 0 0 0
d=diff(A,1,2);
result= min( sum(d==-1,2) - ~A(:,end), sum(d==1,2) - ~A(:,1) )
result = -1

Melden Sie sich an, um zu kommentieren.


Bruno Luong
Bruno Luong am 28 Aug. 2023
Bearbeitet: Bruno Luong am 28 Aug. 2023
A=[1 0 1 1 1 0 0 1;0 1 0 1 1 0 1 0;0 0 1 0 0 0 0 0;1 0 1 1 0 0 1 1]
A = 4×8
1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1
max(sum(diff(~~A,1,2)==1,2)-~A(:,1),0)
ans = 4×1
2 2 0 2
% If A is binary you can simplify to
% max(sum(diff(A,1,2)==1,2)-~A(:,1),0)

Kategorien

Mehr zu Specifying Target for Graphics Output finden Sie in Help Center und File Exchange

Tags

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by