Using Runge-Kutta in Matlab
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
L'O.G.
am 23 Aug. 2023
Kommentiert: L'O.G.
am 23 Aug. 2023
I am trying to solve an equation dx/dt = f(x,t) where f(x,t) is a velocity. I want to solve for the positions x to obtain the trajectory x(t). I've seen that the time evolution of the positions x can be calculated using Runge-Kutta, but Matlab's implementation via ode45 (or similar) looks like it requires a function in the first argument. Here, I instead have a starting position x0 and compute the velocity at that initial point, f(x0,t0). How do I use Runge-Kutta to determine the time evolution of the position based on the velocities? If it matters, I can calculate an arbitrary instantaneous velocity f(x,t) from the forces acting on a position x. To give more context, I am calculating the velocity fxt = S*Fx where the matrix S and the force Fx both depend on the particle position, so the velocity that I calculate is a scalar.
0 Kommentare
Akzeptierte Antwort
Bruno Luong
am 23 Aug. 2023
Bearbeitet: Bruno Luong
am 23 Aug. 2023
" I can calculate an arbitrary velocity f(x,t) from the forces acting on a position x."
Good this is a very good starting point. If you have f(x,t) in MATLAB function form,
then simply call
sol = ode45(@(t,x) f(x,t), [t0 tend], x0)
tend is the last time where you want the solution to be computed.
Read the doc of ode45
8 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!