Find the optimal value to maximize a function
    7 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Hadeel Obaid
 am 22 Aug. 2023
  
    
    
    
    
    Kommentiert: Mathieu NOE
      
 am 28 Aug. 2023
            Hi everyone.....could anyone help......I need to find th optimal value of x0 and x1 to maximize R, where x1=d-x0..........the function MATLAB code:
close all; clear all; clc;
% System parameters
F = 10000;    % Number of files
S = 100;     % SBS cache capacity (set to 100)
M = 50;      % Cash capacity fraction
alpha = 2; % Path loss exponent for LOS link
c = 3e8;     % Light speed
fr = 1e12;  % Operating frequency
B = 10e6;    % System bandwidth
epsilon = 0.8; % Skewness factor
K = 0.0016;  % Molecular absorption coefficient
P_M = 10^(64/10); % Transmit power MBS
P_S = 10^(30/10); % Transmit power SBS
sigma = 10^(-90/10); % Noise power
N_L = 512;
N_M = 16;
eta = 1;
x2 =30;      % RIS-MBS distance
d_range = 1:1:40;
R = zeros(size(d_range));
for i = 1:length(d_range)
    d = d_range(i);
    sum1 = 0;
    for f = 1:F
        sum1 = sum1 + f^(-epsilon);
    end
    sum2 = 0;  
    for f = 1:M
        sum2 = sum2 + f^(-epsilon)/sum1;
    end
    sum3 = 0;
    for f = (M + 1):(M + (S - M) / eta)
        sum3 = sum3 + (f^(-epsilon)) / sum1;
    end
    sum3 = sum3 * eta;
    beta = (c/(4*pi*fr))^2;  % Spreading loss index
    Rs = B * log2(1 + (P_S * beta * (d-x1)^(-alpha) * exp(-K * (d-x1))) / sigma);
    Rm = B * log2(1 + (P_M * (N_L^2) * N_M * (beta * (d-x0)^(-alpha) * exp(-K * (d-x0))) * (beta * x2^(-alpha) * exp(-K * x2))) / sigma);
    Rt = Rs * (sum2 + sum3) + Rm * (1 - (sum2 + sum3));
    R(i) = Rt;
end
figure
plot(d_range, R, 'b^-')
xlabel('SBS-RIS Distance, d')
ylabel('Achievable Rate')                                         
0 Kommentare
Akzeptierte Antwort
  Mathieu NOE
      
 am 23 Aug. 2023
        Hi
seems to me that R curves goes up  as x0 goes closer to zero (but not rqual to zero otherwise you get Inf values)
also all the small for loops to create the sum1, sum2,sum3  variables can be replaced with sum function directly
close all; clear all; clc;
x0_range  = [0.01 0.25 0.5 1];
% System parameters
F = 10000;    % Number of files
S = 100;     % SBS cache capacity (set to 100)
M = 50;      % Cash capacity fraction
alpha = 2; % Path loss exponent for LOS link
c = 3e8;     % Light speed
fr = 1e12;  % Operating frequency
B = 10e6;    % System bandwidth
epsilon = 0.8; % Skewness factor
K = 0.0016;  % Molecular absorption coefficient
P_M = 10^(64/10); % Transmit power MBS
P_S = 10^(30/10); % Transmit power SBS
sigma = 10^(-90/10); % Noise power
N_L = 512;
N_M = 16;
eta = 1;
x2 =30;      % RIS-MBS distance
d_range = 1:1:40;
R = zeros(numel(d_range),numel(x0_range));
for k = 1:numel(x0_range)
    x0 = x0_range(k);
    for i = 1:length(d_range)
        d = d_range(i);
        x1 = d-x0; % added line 
%         sum1 = 0;
%         for f = 1:F
%             sum1 = sum1 + f^(-epsilon);
%         end
        f = 1:F;
        sum1 = sum(f.^(-epsilon));
%         sum2 = 0;  
%         for f = 1:M
%             sum2 = sum2 + f^(-epsilon)/sum1;
%         end
        f = 1:M;
        sum2 = sum(f.^(-epsilon))/sum1;        
%         sum3 = 0;
%         for f = (M + 1):(M + (S - M) / eta)
%             sum3 = sum3 + (f^(-epsilon)) / sum1;
%         end
%         sum3 = sum3 * eta;
        f = (M + 1):(M + (S - M) / eta);
        sum3 = eta*sum(f.^(-epsilon))/sum1;        
        beta = (c/(4*pi*fr))^2;  % Spreading loss index
        Rs = B * log2(1 + (P_S * beta * (d-x1)^(-alpha) * exp(-K * (d-x1))) / sigma);
        Rm = B * log2(1 + (P_M * (N_L^2) * N_M * (beta * (d-x0)^(-alpha) * exp(-K * (d-x0))) * (beta * x2^(-alpha) * exp(-K * x2))) / sigma);
        Rt = Rs * (sum2 + sum3) + Rm * (1 - (sum2 + sum3));
        R(i,k) = Rt;
        leg{k} = ['x0 = ' num2str(x0)];
    end
end
    plot(d_range, R, '^-')
    legend(leg)
    xlabel('SBS-RIS Distance, d')
    ylabel('Achievable Rate')  
8 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Genomics and Next Generation Sequencing finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


