How to find the intersection values of line and curve?

1 Ansicht (letzte 30 Tage)
GULZAR
GULZAR am 22 Aug. 2023
Kommentiert: Star Strider am 22 Aug. 2023
How to find the intersection values of line(black) and the curve(blue)
clc
close all
d1 = 0.4;d2 = 0.6;d = d1 + d2; n1 = 3.46;n2 = 1.5;
lambda = linspace(400e-3,800e-3, 100000); w=2*pi./lambda;
D1 = (2*pi*n1*d1)./lambda;D2 = (2*pi*n2*d2)./lambda;
RHS = cos(D1).*cos(D2) - 0.5*(n1^2+n2^2)/(n1*n2) * sin(D1) .*sin(D2);
plot(w,RHS)
hold on
yline(-1); hold off
hold on
yline(1); hold off

Akzeptierte Antwort

Star Strider
Star Strider am 22 Aug. 2023
Try this —
% clc
% close all
d1 = 0.4;d2 = 0.6;d = d1 + d2; n1 = 3.46;n2 = 1.5;
lambda = linspace(400e-3,800e-3, 100000); w=2*pi./lambda;
D1 = (2*pi*n1*d1)./lambda;D2 = (2*pi*n2*d2)./lambda;
RHS = cos(D1).*cos(D2) - 0.5*(n1^2+n2^2)/(n1*n2) * sin(D1) .*sin(D2);
yl = [-1 1];
for k = 1:numel(yl)
[xi{k},yi{k}] = intsx(w, RHS, yl(k));
end
figure
plot(w,RHS)
hold on
for k = 1:numel(yl)
plot(xi{k}, yi{k}, 'rs')
end
yline(-1)
yline(1)
hold off
function [xi,yi] = intsx(x,y,c) % Simple Intersection Function
% ARGUMENTS: (x,y): Vectors, c: Constant
zci = find(diff(sign(y-c)));
for k = 1:numel(zci)
idxrng = max(1,zci(k)-1) : min(numel(x),zci(k)+1);
xi(k,:) = interp1(y(idxrng)-c,x(idxrng),0);
yi(k,:) = interp1(x(idxrng), y(idxrng), xi(k));
end
end
.
  2 Kommentare
GULZAR
GULZAR am 22 Aug. 2023
Thank you.....One more favor for me, I need the intersection points in ascending order in array. Can you please help.....
Star Strider
Star Strider am 22 Aug. 2023
As always, my pleasure!
They already are for each line value (-1,+1) intersection.
To get them all in one array, concatenate them and sort it by the ‘x’ value:
% clc
% close all
d1 = 0.4;d2 = 0.6;d = d1 + d2; n1 = 3.46;n2 = 1.5;
lambda = linspace(400e-3,800e-3, 100000); w=2*pi./lambda;
D1 = (2*pi*n1*d1)./lambda;D2 = (2*pi*n2*d2)./lambda;
RHS = cos(D1).*cos(D2) - 0.5*(n1^2+n2^2)/(n1*n2) * sin(D1) .*sin(D2);
yl = [-1 1];
for k = 1:numel(yl)
[xi,yi] = intsx(w, RHS, yl(k));
xv{k,:} = xi;
yv{k,:} = yi;
end
Intersections = array2table(sortrows(cell2mat([xv yv]),1), 'VariableNames',{'x','y'})
Intersections = 12×2 table
x y ______ __ 7.9193 1 8.5627 1 9.4017 -1 9.8854 -1 10.831 1 11.153 1 12.033 -1 12.734 -1 13.695 1 13.825 1 14.811 -1 15.423 -1
figure
plot(w,RHS)
hold on
for k = 1:numel(yl)
plot(xv{k}, yv{k}, 'rs')
end
yline(-1)
yline(1)
hold off
function [xi,yi] = intsx(x,y,c) % Simple Intersection Function
% ARGUMENTS: (x,y): Vectors, c: Constant
zci = find(diff(sign(y-c)));
for k = 1:numel(zci)
idxrng = max(1,zci(k)-1) : min(numel(x),zci(k)+1);
xi(k,:) = interp1(y(idxrng)-c,x(idxrng),0);
yi(k,:) = interp1(x(idxrng), y(idxrng), xi(k));
end
end
The relevant previous function is interp1, and the relevant new functions are cell2mat, sortrows, and array2table.
.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

Torsten
Torsten am 22 Aug. 2023

Produkte


Version

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by