Error in Hermite Polynomial
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hermite_Polynomial.m
function Q = Hermite_Polynomial(X, Y, YP)
n = length(X) - 1;
Q = zeros(2*n + 2, 2*n + 2);
for i = 0:n
z(2*i + 1) = X(i + 1);
z(2*i + 2) = X(i + 1);
Q(2*i + 1, 1) = Y(i + 1);
Q(2*i + 2, 1) = Y(i + 1);
Q(2*i + 2, 2) = YP(i + 1);
if i ~= 0
Q(2*i + 1, 2) = (Q(2*i + 1, 1) - Q(2*i - 1, 1)) / (z(2*i + 1) - z(2*i - 1));
end
end
for i = 2:2*n + 1
for j = 2:i
Q(i, j) = (Q(i, j - 1) - Q(i - 1, j - 1)) / (z(i) - z(i - j + 1));
end
end
result = Q(i,j);
end
main.m
clear all
X = [1, 2, 3];
Y = [1.105170918, 1.491824698, 2.459603111];
YP = [0.2210341836, 0.5967298792, 1.475761867];
x_interp = 1.25;
% Compute divided differences
Q = Hermite_Polynomial(X, Y, YP);
% Interpolate using Hermite polynomial
n = length(X) - 1;
result_H5 = Q(1, 1);
for i = 1:2*n+1
Q_ii = Q(i,i);
product = 1;
for j = 0:i-1
Q_ii = Q_ii * (x_interp - X(j));
end
result_H5 = result_H5 + Q_ii;
end
% Compute Hermite interpolation using H3(1.25)
result_H3 = Q(1, 1);
for i = 1:2*n-1
Q_ii = Q(i,i);
product = 1;
for j = 0:i-1
product = product * (x_interp - X(j));
end
result_H3 = result_H3 + Q_ii;
end
% Display results
disp(['H5(1.25) approximation: ', num2str(result_H5)]);
disp(['H3(1.25) approximation: ', num2str(result_H3)]);
The above is my code when I run it I get the error saying the following:
Array indices must be positive integers or logical values.
Error in main (line 15)
z_product = z_product * (x_interp - X(j);
Array indices must be positive integers or logical values.
Error in main (line 29)
product = product .* (x_interp - X(j));
Please help me debug the it
0 Kommentare
Antworten (1)
Alan Stevens
am 20 Aug. 2023
Bearbeitet: Alan Stevens
am 20 Aug. 2023
In line
for j = 0:i-1
you have j starting at zero. Matlab's indices start at 1, so the following line should have X(j+1) not X(j).
0 Kommentare
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!