Value for Function with 2nd order Central difference scheme
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
VIKASH
am 12 Aug. 2023
Beantwortet: Anu
am 30 Sep. 2023

I am trying to write code for the above problem but getting wrong answer, Kindly help me to find the error in the code or suggest if there is any better alternate way to write code for the problem.
Right answer is 2.3563
c=1.5;
h=0.1;
x=(c-h):h:(c+h);
Fun=@(x) exp(x)-exp(-x)/2;
dFun=@(x) 2*exp(x)+2*exp(-x)/2;
F=Fun(x);
n=length(x);
dx= (F(:,end)-F(:,1))/(2*h)
0 Kommentare
Akzeptierte Antwort
Star Strider
am 12 Aug. 2023
See First and Second Order Central Difference and add enclosing parentheses to the numerator of your implementation of the cosh function.
2 Kommentare
Anu
am 30 Sep. 2023
c = 1.5;
h = 0.1;
x = (c - h):h:(c + h);
Fun = @(x) (exp(x) - exp(-x)) / 2;
F = Fun(x);
n = length(x);
dx = (F(3) - F(1)) / (2 * h); % Corrected calculation of derivative at x=c
Weitere Antworten (1)
Anu
am 30 Sep. 2023
- c is the central point.
- h is the step size.
- x is a vector of values around c.
- Fun is the function you want to calculate the derivative for.
- F is the function values at the points in x.
- dx calculates the derivative at the central point c using finite differences.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Matrix Computations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!