Can anybody help me to code boundary conditions in MATLAB for Keller Box Method?
25 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Can anybody help me to code boundary conditions in MATLAB for Keller Box Method?
f^'=1,f=S,θ^'=-r_1 [1+θ],ϕ^'=-r_2 [1+ϕ] at η=0
f^'=0,f^''=0,θ=0,ϕ=0 as η→∞
1 Kommentar
vijayakumar
am 30 Okt. 2024 um 7:31
how to set MATLAB code for velocity slip and temperature slip boundary condition for kelller box method please help me out
at eta=0, f(eta)=0, f^'(eta)=SF*f^''(eta), theta=1+ST*theta^'(eta)
at eta=infinite, f^'=0, theta=0
Antworten (2)
Mrutyunjaya Hiremath
am 6 Aug. 2023
% Define parameters
r_1 = 0.1;
r_2 = 0.2;
S = 2.0;
% Define the differential equations
% y(1) = f, y(2) = f', y(3) = θ, y(4) = ϕ
ode_system = @(eta, y) [y(2); 1; y(3); y(4)];
% Define the boundary conditions at η = 0
initial_conditions = [S, 1, 0, 0];
% Define the boundary conditions at η → ∞
eta_infinity = 100; % Choose a large value
final_conditions = [0, 0, 0, 0];
% Solve the differential equations
[eta, result] = ode45(ode_system, [0, eta_infinity], initial_conditions);
% Extract the solutions
f = result(:, 1);
f_prime = result(:, 2);
theta = result(:, 3);
phi = result(:, 4);
% Plot the solutions
subplot(2, 2, 1);
plot(eta, f);
xlabel('η');
ylabel('f');
title('f vs. η');
subplot(2, 2, 2);
plot(eta, f_prime);
xlabel('η');
ylabel("f'");
title("f' vs. η");
subplot(2, 2, 3);
plot(eta, theta);
xlabel('η');
ylabel('θ');
title('θ vs. η');
subplot(2, 2, 4);
plot(eta, phi);
xlabel('η');
ylabel('ϕ');
title('ϕ vs. η');
7 Kommentare
Torsten
am 7 Aug. 2023
It should be clear that we won't program this for you.
If you have a boundary value problem as above, you can use the MATLAB tools "bvp4c" or "bvp5c".
If your problem is an assignment, you will have to start programming it in MATLAB or make a google search whether you find a MATLAB code that fits your needs.
Thiripura Sundari
am 27 Sep. 2024
Good evening Professor, Shall we give matlab bvp4c code in jeffrey fluid thank you.
Santosh Devi
am 27 Feb. 2024
f^''' (η)+ff^'' (η)-(f^' (η))^2+Mf^' (η)-λf(η)=0
■θ^'' (η)+Pr[f(η)θ^' (η)-b/(u_w^2 ) ηθ(η)+Ec(f^'' (η))^2+Q_0 θ(η)]=0
■ϕ^'' (η)+Sc[f(η) ϕ^' (η)-Kϕ(η)]=0
■f(0)=s,f^' (0)=1,θ(0)=1,ϕ(0)=1
■f^' (∞)→0,θ(∞)→0,ϕ(∞)→0
5 Kommentare
Thiripura Sundari
am 22 Okt. 2024
Good afternoon Professor, can please give fourth order jeffrey fluid using keller box method
Siehe auch
Kategorien
Mehr zu Fluid Dynamics finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!