How to smooth the matlab plot to get the desired plot shape?

1 Ansicht (letzte 30 Tage)
Haya Ali
Haya Ali am 24 Jul. 2023
Kommentiert: Haya Ali am 25 Jul. 2023
Is there a way to change figure one to figure 2 (like the lines I draw in red and black color) without changing the values of y1 and y2? Please help.
Figure 1:
Figure 2:
Below is my code
clear all; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
Xi = 0:0.005:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")

Akzeptierte Antwort

Angelo Yeo
Angelo Yeo am 24 Jul. 2023
I'm not sure about your intention. But the easiest way to smooth signals is moving average. See the doc below for more information about moving average.
https://www.mathworks.com/help/releases/R2023a/matlab/ref/movmean.html
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
%% Smoothing
Yi_smooth = movmean(Yi_spline, 100);
Yj_smooth = movmean(Yj_spline, 100);
h(5) = plot(Xi, Yi_smooth, 'r','linewidth',2);
h(6) = plot(Xi, Yj_smooth, 'k','linewidth',2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
  4 Kommentare
Angelo Yeo
Angelo Yeo am 24 Jul. 2023
I agree with @Image Analyst. What's your intention, @Haya Ali?
Anyways, if you insist that the resultant curve should pass (0, 0), you can think of something like curve fitting for a quadratic polynomial without a bias term.
clear; close all; clc;
x= [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1];
y1 = [0 0.0833 0.1583 0.2167 0.1500 0.3250 0.3750 0.3000 0.5917 0.3750 0.5000];
y2= [ 0 0 0.0167 0.0750 0.1000 0.0917 0.1167 0.1583 0.1083 0.2000 0.1833];
figure
plot (x,y1,'o')
hold on
plot (x,y2,'o')
dt = 0.005;
Xi = 0:dt:1;
Yi = pchip(x,y1,Xi);
Yi_spline = spline(x,y1,Xi);
h(1) = plot(Xi,Yi,'-','color',lines(1));
h(2) = plot(Xi, Yi_spline, '--', 'color', lines(1));
Yj = pchip(x,y2,Xi);
Yj_spline = spline(x, y2, Xi);
h(3) = plot(Xi,Yj,'-','color',[0.85, 0.325, 0.098]);
h(4) = plot(Xi,Yj_spline,'--','color',[0.85, 0.325, 0.098]);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "location", "NW")
%% Fitting a quadratic curve
% Set up fittype and options.
[xData, yData] = prepareCurveData( Xi, Yi_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yi_fit = fit( xData, yData, ft, opts );
[xData, yData] = prepareCurveData( Xi, Yj_spline );
ft = fittype( 'p1*x^2+p2*x', 'independent', 'x');
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.StartPoint = [0, 0];
Yj_fit = fit( xData, yData, ft, opts );
h(5) = plot(Xi, Yi_fit.p1*Xi.^2 + Yi_fit.p2*Xi,'r','linewidth', 2);
h(6) = plot(Xi, Yj_fit.p1*Xi.^2 + Yj_fit.p2*Xi,'k','linewidth', 2);
legend(h, "Yi pchip", "Yi spline", "Yj pchip", "Yj spline", "Yi smoothed", "Yj smoothed", "location", "NW")
Haya Ali
Haya Ali am 25 Jul. 2023
Actually I was recommended to take avergae of my results 100 times ti smooth my original plot. I didnt want to spend many days on one graph that is why I am trying to get a plot that is smoothest. Thank you so much for your help.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Smoothing finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by