Fitting a model to my data using non linear least square fit method
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have x values (first column in the excel file) and P values (second column in the excel file). I want to obtain the parameters 'q' and 'm' using the expression: P = [ 1 - (1-q) * m * x ] ^ ( 1 / (1 - q) ) in a log log plot and plot the same using non linear least square fit method.
1 Kommentar
Diwakar Diwakar
am 21 Jul. 2023
% Step 1: Load data from the Excel file
data = xlsread('data.xlsx');
x = data(:, 1);
P = data(:, 2);
% Step 2: Define the equation and the error function for nonlinear fit
eqn = @(params, x) (1 - (1 - params(1)) * params(2) * x) .^ (1 / (1 - params(1)));
errorFunc = @(params) eqn(params, x) - P;
% Step 3: Use lsqcurvefit to obtain parameter estimates
initialGuess = [0.5, 1]; % Initial guess for q and m
paramsFit = lsqcurvefit(eqn, initialGuess, x, P);
% Extract the fitted parameters
q = paramsFit(1);
m = paramsFit(2);
% Step 4: Plot the data and the fitted curve on a log-log plot
x_vals_for_plot = logspace(log10(min(x)), log10(max(x)), 100); % Generating log-spaced x values for the plot
P_fit = eqn(paramsFit, x_vals_for_plot);
loglog(x, P, 'o', 'MarkerFaceColor', 'b'); % Plot the original data points with markers
hold on;
loglog(x_vals_for_plot, P_fit, 'r', 'LineWidth', 2); % Plot the fitted curve in red
hold off;
xlabel('x');
ylabel('P');
legend('Data', 'Fitted Curve');
title('Nonlinear Least Squares Fit');
grid on;
Antworten (2)
Mathieu NOE
am 21 Jul. 2023
hello
try this , hope it helps
results :
m = 24.5179
q = 1.2078
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1439363/image.png)
data = readmatrix('LVD_AE.xlsx');
x = data(:,1);
y = data(:,2);
% sort / unique x
[x,ia,ic] = unique(x);
y = y(ia);
% remove x = 0 data (just in case)
ind = x>eps;
x = x(ind);
y = y(ind);
% remove y = 0 data (just in case)
ind = y>eps;
x = x(ind);
y = y(ind);
% fit using log spaced values
xx = logspace(log10(min(x)),log10(max(x)),100);
yy = interp1(x,y,xx,'linear');
loglog(x,y,'*-',xx,yy,'*-');
% curve fit using fminsearch
% We would like to fit the function :
% P = [ 1 - (1-q) * m * x ] ^ ( 1 / (1 - q) )
f = @(m,q,x) (1-(1-q)*m*x).^(1/(1-q));
obj_fun = @(params) norm(f(params(1), params(2), x)-yy);
C1_guess = [10 1 ];
sol = fminsearch(obj_fun, C1_guess); %
m_sol = sol(1)
q_sol = sol(2)
yfit = f(m_sol, q_sol, xx);
Rsquared = my_Rsquared_coeff(yy,yfit); % correlation coefficient
loglog(xx, yfit, '-',x,y, 'r .', 'MarkerSize', 25)
title(['Fit equation to data : R² = ' num2str(Rsquared) ], 'FontSize', 20)
xlabel('x data', 'FontSize', 20)
ylabel('y data', 'FontSize', 20)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Rsquared = my_Rsquared_coeff(data,data_fit)
% R2 correlation coefficient computation
% The total sum of squares
sum_of_squares = sum((data-mean(data)).^2);
% The sum of squares of residuals, also called the residual sum of squares:
sum_of_squares_of_residuals = sum((data-data_fit).^2);
% definition of the coefficient of correlation is
Rsquared = 1 - sum_of_squares_of_residuals/sum_of_squares;
end
0 Kommentare
Alex Sha
am 27 Sep. 2023
The best solution:
Root of Mean Square Error (RMSE): 0.0143800358786989
Correlation Coef. (R): 0.998885623657614
R-Square: 0.997772489149861
Parameter Best Estimate
--------- -------------
q 1.42974692753178
m 46.7110560131104
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!