try to find hessian matrix
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
f(k) = n*ln(k)-n*ln(1/n*sum(i=1 to n)xi^k+(k-1)sum of (1to n)ln(xi))-n
3 Kommentare
Dyuman Joshi
am 13 Jul. 2023
The expression you have written above is not clear. Please format it properly.
Akzeptierte Antwort
Rahul
am 13 Jul. 2023
Hi Taniya,
Assuming you have k, n and xi, you can try the following code to find the Hessian Matrix:
f = n*log(k) - n*log(1/n * sum(xi^k, i, 1, n) + (k-1) * sum(log(xi), i, 1, n)) - n;
% Calculate the second partial derivatives
d2f_dk2 = diff(f, k, 2);
d2f_dxi_dk = diff(f, k, xi);
d2f_dk_dxi = diff(f, xi, k);
d2f_dxi2 = diff(f, xi, 2);
% Create the Hessian matrix
H = [d2f_dk2, d2f_dxi_dk; d2f_dk_dxi, d2f_dxi2];
Hope this helps.
Thanks.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


