Problem in Visualising line plots and color coding the lines
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Mark
am 10 Jul. 2023
Kommentiert: ProblemSolver
am 10 Jul. 2023
I have 100 sets of probability data which ranges from 1E-4 to 1E-6 that I would like to plot as line graphs. To enhance the visualization, I plan to take the logarithm of the probabilities and color code by the log of probability that it would occur. Additionally, I aim to sort the lines so that the highest probabilities are plotted on top for better visibility. However, the current MATLAB code I have attempted is not yielding the desired outcome. I kindly request your assistance in identifying any errors and providing guidance on visualizing the data more effectively.
% Set the range of random numbers
minValue = 1E-6;
maxValue = 1E-4;
% Generate 100 random numbers
total_probability = minValue + (maxValue - minValue) * rand(1, 100);
% Take the logarithm of the probabilities
log_probabilities = log(total_probability);
% Sort the probabilities in descending order
[sorted_probabilities, sorted_indices] = sort(log_probabilities, 'descend');
% Sort the original data accordingly
sorted_data = total_probability(sorted_indices);
% Plot the line plots with color coding based on log probabilities
figure;
hold on;
for i = 1:length(sorted_data)
color_value = sorted_probabilities(i) / max(sorted_probabilities);
plot(sorted_data(i), 'Color', [color_value 0 0]);
end
hold off;
0 Kommentare
Akzeptierte Antwort
ProblemSolver
am 10 Jul. 2023
Bearbeitet: ProblemSolver
am 10 Jul. 2023
You are on the right track however you do these minor changes:
Instead of this:
% Set the range of random numbers
minValue = 1E-6;
maxValue = 1E-4;
% Generate 100 random numbers
total_probability = minValue + (maxValue - minValue) * rand(1, 100);
% Take the logarithm of the probabilities
log_probabilities = log(total_probability);
Use this:
% Take the logarithm of the probabilities
log_probabilities = log10(total_probability);
Instead of this:
% Plot the line plots with color coding based on log probabilities
figure;
hold on;
for i = 1:length(sorted_data)
color_value = sorted_probabilities(i) / max(sorted_probabilities);
plot(sorted_data(i), 'Color', [color_value 0 0]);
end
hold off;
Use this:
% Create a color map for the plot
cmap = jet(length(sorted_data));
% Plot the line plots with color coding based on log probabilities
figure;
hold on;
for i = 1:length(sorted_data)
plot([1, 2], [sorted_data(i), sorted_data(i)], 'Color', cmap(i, :));
end
hold off;
% Customize the plot
title('Line Plots of Logarithm of Probabilities');
xlabel('X');
ylabel('Probability');
colormap(cmap);
colorbar('Ticks', linspace(0, 1, length(sorted_data)), 'TickLabels', num2str(sorted_probabilities', '%0.2f'));
I hope this helps!
2 Kommentare
ProblemSolver
am 10 Jul. 2023
Hello @Mark: Yeah I realized that it was missing something. I updated the code above, as well as I am providing the whole code here as well:
% Set the range of random numbers
minValue = 1E-6;
maxValue = 1E-4;
% Generate 100 random numbers
total_probability = minValue + (maxValue - minValue) * rand(1, 100);
% Take the logarithm of the probabilities
log_probabilities = log10(total_probability);
% Sort the probabilities in descending order
[sorted_probabilities, sorted_indices] = sort(log_probabilities, 'descend');
% Sort the original data accordingly
sorted_data = total_probability(sorted_indices);
% Create a color map for the plot
cmap = jet(length(sorted_data));
% Plot the line plots with color coding based on log probabilities
figure;
hold on;
for i = 1:length(sorted_data)
plot([1, 2], [sorted_data(i), sorted_data(i)], 'Color', cmap(i, :));
end
hold off;
% Customize the plot
title('Line Plots of Logarithm of Probabilities');
xlabel('X');
ylabel('Probability');
colormap(cmap);
colorbar('Ticks', linspace(0, 1, length(sorted_data)), 'TickLabels', num2str(sorted_probabilities', '%0.2f'));
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Data Distribution Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!