fitting data with a combination of exponential and linear form ( a*exp(-x/b)+c*x+d )
17 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello Altruists,
I have been trying to fit my data to a combination of exponential and linear form, i.e., a*exp(-x/b)+c*x+d . I am not getting a good fit (image attached). I am getting an warning as well (Warning: Start point not provided, choosing random start point). Could anyone offer some help?
I have tried with this code:
data= readmatrix('data');
x= data(:,1);
y = data(:,2);
% getting fitting parameters
explinearfit = fittype('a*exp(-x/b)+c*x+d')
fo = fitoptions(explinearfit);
fo.normalize = 'on';
myFit = fit(x,y,explinearfit);
%plot
plot(myFit,x,y)
ylabel('Y')
xlabel('X')
legend('Data','Fit', 'location', 'best')
0 Kommentare
Antworten (4)
Matt J
am 4 Jul. 2023
Bearbeitet: Matt J
am 4 Jul. 2023
If you download fminspleas, you can get a pretty good fit with a fairly naive initial guess [b,e,f]=[-1,0,0]:
[x,y]=readvars('data.csv');
flist={ @(p,x)exp(p(1)*x) ,@(p,x) x, 1, @(p,x)tanh(p(2)*x+p(3))};
warning off
[p,coeff]=fminspleas(flist,[-1,0,0],x,y,-inf(1,3),[0,inf,inf]); warning on
p(:).'
xs=linspace(min(x),max(x));
plot(x,y,'--g',xs, ffit(xs,p,coeff,flist));
function y=ffit(x,p,coeff,flist)
y=0;
for i=1:numel(flist)
f=flist{i};
if isnumeric(f)
y=y+coeff(i)*f;
else
y=y+coeff(i)*f(p,x);
end
end
end
0 Kommentare
Torsten
am 3 Jul. 2023
Verschoben: Torsten
am 3 Jul. 2023
Try
f(x) = a*atan(b*x)
It's too steep at the beginning and too flat at the end, but better than your model function.
data= readmatrix('data');
x = data(:,1);
y = data(:,2);
f = @(p) p(1)*atan(p(2)*x);
fun = @(p) f(p) - y;
sol = lsqnonlin(fun,[2/pi 1])
hold on
plot(x,y,'o')
plot(x,f(sol))
hold off
Alex Sha
am 4 Jul. 2023
If taking fitting function as "y=a*exp(-x/b)+c*x+d", the result will be:
Sum Squared Error (SSE): 0.473516174967249
Root of Mean Square Error (RMSE): 0.0194398036424297
Correlation Coef. (R): 0.993172772220197
R-Square: 0.986392155479551
Parameter Best Estimate
--------- -------------
a -0.626947642051749
b 1365.46862978889
c 1.57136165222552E-5
d 0.682801486192597

If taking fitting function as "y=a*exp(b*x)+c*exp(d*x)", the result will be:
Sum Squared Error (SSE): 0.517841961771885
Root of Mean Square Error (RMSE): 0.0203293308633968
Correlation Coef. (R): 0.992531430423344
R-Square: 0.985118640378209
Parameter Best Estimate
--------- -------------
a -0.637793104918275
b -0.00067464442828496
c 0.705787394940032
d 1.74592589676531E-5

A much better result will be obtained if taking fitting function as "y=a*exp(b*x)+c*x+d+tanh(e*x+f)*p"
Sum Squared Error (SSE): 0.154723411889559
Root of Mean Square Error (RMSE): 0.0111122622277951
Correlation Coef. (R): 0.997774312797138
R-Square: 0.995553579277802
Parameter Best Estimate
--------- -------------
a -0.44380788683452
b -0.000338851451599573
c 1.0070723631259E-5
d 0.571547658395962
e 0.0025117355962601
f -0.850904593274322
p 0.195041944730927

3 Kommentare
Torsten
am 4 Jul. 2023
Bearbeitet: Torsten
am 4 Jul. 2023
Try if you can reproduce the results if you use the fitting parameters as initial guesses in MATLAB.
@Alex Sha has his "special tool" to do the fitting (not part of MATLAB), and I think he invests quite a long time to adequate initial guesses for the parameters.
Alex Sha
am 5 Jul. 2023
I'm ashamed that it's not my product, although hopefully it's a commercial optimization solver package, I just like to use it because it's simple to use but works well.
Sam Chak
am 5 Jul. 2023
The data seems to exhibit the pattern of an nth-root function (a form of the power function), given by

where
is a negative exponent function that varies with x. Because the data is bounded by 1, we can assume that
. Since the exponential function-based models yield some good results in @Alex Sha's fitting, I attempted with the following model:



Fit model #1
% Data Sets
[x, y] = readvars('data.csv');
% Curve-fitting
fo = fitoptions('Method', 'NonlinearLeastSquares', ...
'Lower', [-0.9, -0.006, -0.07, -0.0002, -1.2, -0.04, -0.2, -0.0008], ...
'Upper', [0, 0, 0, 0, 0, 0, 0, 0], ...
'StartPoint', [1 1 1 1 1 1 1 1]);
ft = fittype('x^(a*exp(b*x) + c*exp(d*x) + e*exp(f*x) + g*exp(h*x))', 'options', fo);
[yfit, gof] = fit(x, y, ft)
figure
plot(x, y, '.', 'color', '#A7B7F7'), hold on
plot(yfit, 'r'), hold off, grid on
legend('Data', 'Fitted curve', 'location', 'best')
Note that the coefficients are not unique. In my machine, I got different results"
Fit model #2
General model:
f(x) = x^(a*exp(b*x) + c*exp(d*x) + e*exp(f*x) + g*exp(h*x))
Coefficients (with 95% confidence bounds):
a = -0.1227 (-0.1285, -0.1169)
b = -0.0007697 (-0.0008078, -0.0007315)
c = -0.06455 (-0.06617, -0.06292)
d = -0.0001311 (-0.0001335, -0.0001288)
e = -1.12 (-1.968, -0.2716)
f = -0.03423 (-0.0573, -0.01116)
g = -0.8431 (-0.929, -0.7572)
h = -0.005286 (-0.005609, -0.004962)
Goodness of fit:
SSE: 0.1438
R-square: 0.9959
Adjusted R-square: 0.9958
RMSE: 0.01075
Fit model #3
General model:
f(x) = x^(a*exp(b*x) + c*exp(d*x) + e*exp(f*x) + g*exp(h*x))
Coefficients (with 95% confidence bounds):
a = -0.8429 (-0.9291, -0.7566)
b = -0.005285 (-0.00561, -0.00496)
c = -0.06455 (-0.06617, -0.06292)
d = -0.0001311 (-0.0001335, -0.0001288)
e = -1.107 (-1.94, -0.2753)
f = -0.03402 (-0.05694, -0.01109)
g = -0.1227 (-0.1285, -0.1169)
h = -0.0007697 (-0.0008078, -0.0007315)
Goodness of fit:
SSE: 0.1438
R-square: 0.9959
Adjusted R-square: 0.9958
RMSE: 0.01075
3 Kommentare
Alex Sha
am 5 Jul. 2023
For fitting function provided by @Sam Chak, the results are actually unique, only the order is different
Sum Squared Error (SSE): 0.143801140894944
Root of Mean Square Error (RMSE): 0.0107128649564239
Correlation Coef. (R): 0.997931669471303
R-Square: 0.995867616933781
Parameter Best Estimate
--------- -------------
a -0.842982011054431
b -0.00528502909652476
c -0.122676258206711
d -0.000769613241785951
e -0.0645440331501187
f -0.000131143071549622
g -1.11996380236003
h -0.0342317204260728
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!