How to plot xy, yz and xz plane contour with integration matrix equation
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Pannawat Pongsriassawin
am 25 Jun. 2023
Kommentiert: Pannawat Pongsriassawin
am 17 Jul. 2023
I try to follw mt professor to plot contour plot of Rosenthal's equation, and here it my code
clear all
close all
clc
%Constant
rho = 4420; %kg/m^3
Cp = 550; %J/kg?K
T0 = 303.15; %K
A = 0.5; %[Absorbtivity]
k = 7.2; %W/m/K
alpha = 2.96*10^-6; %m^2/s
D = alpha;
P = 100; %W
v = 1; %m/s
u = v;
Tm = 1933; %K
d_laser = 0.01; %mm
r_laser = d_laser/2; %mm
a = r_laser;
p = D/(u*a);
%Define
x = linspace(-0.005,0.025,100);
y = linspace(-0.0005,0.0005,100);
z = linspace(0,0.005,100);
%Normalized
x_nor = x/a;
y_nor = y/a;
z_nor = z/(D*a/u).^0.5;
[x_mesh, y_mesh] = meshgrid(x_nor, y_nor);
[x_mesh, z_mesh] = meshgrid(x_nor, z_nor);
%Calculation
r = (x_mesh.^2 + y_mesh.^2).^0.5;
Ts = A*P/(pi*rho*Cp*sqrt(D*u*a));
T2 = T0 + (A*P)./(2*pi*k*r).*exp(v.*(r+x_mesh)./(2*D));
q = (2*A*P/(pi*a^2))*exp(-2*r.^2/a^2);
syms t
fun = @(t) exp((-z_mesh.^2./(4*t))-((y_mesh.^2+(x_mesh-t).^2)./(4*p.*t+1)))./((4.*p.*t+1).*sqrt(t));
g = int(fun,t,[0 Inf]);
%Plot x'y' plane
figure
contourf(x_mesh, y_mesh, g, [303.15:100:2000])
colorbar
title('x\primey\prime plane')
xlabel('x\prime (m)')
ylabel('y\prime (m)')
xlim([-0.005 0.025])
%Plot y'z' plane
figure
contourf(x_mesh, z_mesh, g, [303.15:100:2000])
title('x\primez\prime plane')
xlabel('x\prime (m)')
ylabel('z\prime (m)')
xlim([-0.005 0.025])
4 Kommentare
Torsten
am 26 Jun. 2023
Bearbeitet: Torsten
am 26 Jun. 2023
So g should be a three-dimensional array where the first dimension refers to x, the second dimension refers to y and the third dimension refers to z ? Then, to plot in the xy plane, e.g., you want to choose a value "z(iz)" and plot g(:,:,iz) against the x- and y-array ? That's not what you do in your code.
Akzeptierte Antwort
Torsten
am 26 Jun. 2023
Bearbeitet: Torsten
am 26 Jun. 2023
clear all
close all
clc
%Constant
rho = 4420; %kg/m^3
Cp = 550; %J/kg?K
T0 = 303.15; %K
A = 0.5; %[Absorbtivity]
k = 7.2; %W/m/K
alpha = 2.96*10^-6; %m^2/s
D = alpha;
P = 100; %W
v = 1; %m/s
u = v;
Tm = 1933; %K
d_laser = 0.01; %mm
r_laser = d_laser/2; %mm
a = r_laser;
p = D/(u*a);
%Define
x = linspace(-0.005,0.025,100);
y = linspace(-0.0005,0.0005,100);
z = linspace(0,0.005,100);
%Normalized
x_nor = x/a;
y_nor = y/a;
z_nor = z/(D*a/u).^0.5;
[x_mesh,y_mesh,z_mesh] = ndgrid(x_nor,y_nor,z_nor);
fun = @(t) exp((-z_mesh.^2./(4*t))-((y_mesh.^2+(x_mesh-t).^2)./(4*p.*t+1)))./((4.*p.*t+1).*sqrt(t));
g = integral(fun,0,Inf,'ArrayValued',true);
figure(1)
iz = 1;
contourf(y_nor,x_nor,squeeze(g(:,:,iz)))
colorbar
figure(2)
iy = 1;
contourf(z_nor,x_nor,squeeze(g(:,iy,:)))
colorbar
figure(3)
ix = 1;
contourf(z_nor,y_nor,squeeze(g(ix,:,:)))
colorbar
Weitere Antworten (1)
Sarthak
am 27 Jun. 2023
Hello Pannawat,
You can plot the contour by using the meshgrid and surf functions which are available in MATLAB.
[X,Y] = meshgrid(x,y); % Create a grid from x and y vectors
z = zeros(size(x, 1)); % Generate z data
surf(x, y, z); % Plot the contour
You can also refer to the MATLAB Answer provided below for further information.
Hope this helps!!
0 Kommentare
Siehe auch
Kategorien
Mehr zu Surface and Mesh Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


