Regression curve fitting for a given equation
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Arvind
am 12 Jun. 2023
Kommentiert: the cyclist
am 12 Jun. 2023
Find the best fit by given equation
x = [0.0191051892041436 0.0199064802088661 0.0205144445903776 0.0210029746368803 0.0216434799932356 0.0226870689634767 0.0238694334820173 0.0247271126862428 0.0255324218699147 0.0266869614901355];
y = [0.726909090909091 0.731030303030303 0.730909090909091 0.709818181818182 0.664424242424242 0.621454545454545 0.606848484848485 0.597151515151515 0.595939393939394 0.583333333333333];
plot(x, y, 'b.-');
grid on;
where y = (x/a)*ln((m-1)/b) +y0
0 Kommentare
Akzeptierte Antwort
Matt J
am 12 Jun. 2023
Bearbeitet: Matt J
am 12 Jun. 2023
p=polyfit(x,y,1);
From this, you immediately obtain y0=p(2). For the remaining parameters, you can choose any of the infinite solutions to ln((m-1)/b)/a=p(1).
2 Kommentare
the cyclist
am 12 Jun. 2023
@Arvind, the equation you want to fit to,
y = (x/a)*ln((m-1)/b) + y0
is equivalent to
y = x*c + y0
where
c = (1/a)*ln((m-1)/b)
It is not possible (without other restrictions) to determine what a, m, and b are. As Matt stated, there are literally an infinite combination of possibilities.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
