Calculation errors while using subs and det functions
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Selçuk Sehitoglu
am 29 Mai 2023
Kommentiert: Torsten
am 31 Mai 2023
Hello everybody, i have a 9*9 symbolic matrix and i need to calculate thatof determinant in an interval. I would like to insert a numeric array into symbolic variable and get the determinant values and i want to plot them at the end.
The problems are;
1- when i insert numerical array using "subs" function, then get the numerical expression using the "double" function, then calculate the determinant using the "det" function, there are big calculation errors.
syms beta_sym
beta_ara = [(0.0001:0.0001:0.001)';(0.002:0.001:0.01)';(0.02:0.01:1)';(1:1:20)';(25:5:200)'];
f_beta_num=zeros(length(beta_ara),1);
ddel = besselj(1,beta_sym)*beta_sym^8; %% "ddel" is an expression including
%% bessel & mod. bessel functions and 8th
%% order polynomial of beta_sym and so on
for i = 1:length(beta_ara)
f_beta_num(i) = det(double(subs(ddel,beta_sym,beta_ara(i))));
end
figure(1);clf;
plot(beta_ara,(f_beta_num),'LineWidth',2);hold on;
2- when i use "det" function at the most inner part of the row it takes very long time, thus i don't prefer this alternative.
There must be something missing at the step where it calculates determinant after inserting the numerical value. I guess there must be a row added in order to correct calculation / calculation method.
Following you can see how the plot supposed to be & how it is:

Thanks in advance !
0 Kommentare
Akzeptierte Antwort
Matt J
am 30 Mai 2023
Bearbeitet: Matt J
am 30 Mai 2023
You haven't given us access to the input variables needed to repeat the computation. However, the determinant you are evaluating is an order 9 polynomial function of the matrix entries. An order 9 polynomial will have very steep sections where small numerical errors make a big difference in the determinant (as illustrated below). It is usually a bad idea to use determinants for any numerical work. Ordinarily, you would use rcond.
A=rand(9)*diag(linspace(0,200,9))*rand(9);
det(A)
det(A+rand(9)/1e9) %A with small errors
4 Kommentare
Torsten
am 31 Mai 2023
syms beta_sym c11 c12
beta_ara = [(0.0001:0.0001:0.001)';(0.002:0.001:0.01)';(0.02:0.01:1)';(1:1:20)';(25:5:200)'];
f_beta_num=zeros(length(beta_ara),1);
denk1 = c11*besselj(1,beta_sym) + c12*besselk(1,beta_sym) + beta_sym^8;
denk2 = c11*beta_sym*besseli(1,beta_sym) + c12*bessely(1,beta_sym)*beta_sym + beta_sym^4;
denk = [denk1; denk2];
c = [c11; c12];
ddel = equationsToMatrix(denk, c);
det_ddel = matlabFunction(det(ddel));
f_beta_num = det_ddel(beta_ara);
figure(1);clf;
plot(beta_ara,f_beta_num,'LineWidth',2);hold on;
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

