viscous damper Dissipation energy code
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Dear All
i have problem to develop matlab code for instanaouse intgration the dissipated energy in vicouse damper W=intg(C.dX/dt)^2dt,t1 to t2
need supports please
thanks in advane
regards
0 Kommentare
Antworten (1)
Prasanna
am 6 Nov. 2024 um 6:01
Hi Jasem,
To develop MATLAB code for the instantaneous integration of dissipated energy in a viscous damper, you can refer the following code. The below sample MATLAB code assumes an example position data (x = sin(t)) and an example value for the damping coefficient ‘c’.
% Define parameters
C = 0.5; % Damping coefficient (example value)
t = linspace(0, 10, 1000); % Time vector from 0 to 10 seconds
X = sin(t); % Example position data (replace with your actual data)
% Calculate velocity (dX/dt)
dX_dt = gradient(X, t); % Numerical differentiation to get velocity
% Calculate the dissipated energy
W = zeros(size(t)); % Initialize energy array
for i = 1:length(t)
if i > 1
W(i) = trapz(t(1:i), (C * dX_dt(1:i)).^2); % Integrate using trapezoidal rule
end
end
Adjust the damping coefficient (‘c’) and the position data (‘x’) as required. The ‘gradient’ function computes the derivate of the position data with time to obtain the velocity. The ‘trapz’ function then performs numerical integration using the trapezoidal rule, accumulating energy over time. If you have specific time intervals ‘t_1’ and ‘t_2’ , you can adjust the integration limits accordingly. For more information about the functions used, refer the following documentations:
0 Kommentare
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!