When I run my code, I keep getting this error: "Undefined function or variable 'y'."
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Nauryzbay
am 26 Mai 2023
Kommentiert: Nauryzbay
am 30 Mai 2023
close all;clc
tspan = [0 1];
y0(1)=2;
y0(2)=1;
y0(3)=3;
source = 0;
tol = 1e-3;%Критерии допуска для определения наилучшей стоимости Мой критерий остановки - Tol= 1e-3.
error = 1.0;%Начальная ошибка запуска
while error > tol%ЗАПУСТИТЕ ЦИКЛ WHILE
sol = ode45(@(t,y) ode2(t,y,source), [0 1], y0);% ВЫЗЫВАЕМ СОЛВЕР BVP4C:
t = linspace(0,1,100);
source_new = trapz(t,y(3,:));
error = abs(source_new - source);
source = source_new;
end
figure(1);
subplot(3,1,1)
plot(sol.x,sol.y(1,:),'color','r','Linewidth',1.2);
grid on
hold on
xlabel('\bf t'); ylabel('$$y$$','interpreter','latex','fontsize',16);
subplot(3,1,2)
plot(sol.x,sol.y(2,:),'color','r','Linewidth',1.2);
grid on
hold on
xlabel('\bf t'); ylabel('$$\dot{y}$$','interpreter','latex','fontsize',16);
subplot(3,1,3)
plot(sol.x,sol.y(3,:),'color','r','Linewidth',1.2);
grid on
hold on
xlabel('\bf t'); ylabel('$$y"$$','interpreter','latex','fontsize',16);
function dy = ode2(~,y,source)%y''+y'=1+int^1_0(y'*x)dx;y(0) = 2;y(1) = 4;
m=0.05;
dy = zeros(3,1); % создает нулевой вектор-столбец
dy(1)=y(2);
dy(2)=y(3);
dy(3)=-3/m*y(3)+1/(m.^2)*(1-2*y(2)+4.*source);
end
Undefined function or variable 'y'.
Error in IDTinitial6 (line 14)
source_new = trapz(t,y(3,:));
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 26 Mai 2023
Later you keep referring to sol.y so perhaps the reference to y should instead be to sol.y
7 Kommentare
Weitere Antworten (1)
Torsten
am 29 Mai 2023
Bearbeitet: Torsten
am 29 Mai 2023
syms t y(t)
syms s real
m = 0.05;
Dy = diff(y,t);
D2y = diff(y,t,2);
D3y = diff(y,t,3);
eqn = D3y -( -3/m*D2y + 1/m^2*(1-2*Dy+4*s)) ;
sol_ode = dsolve(eqn)
vars = symvar(sol_ode)
cond1 = subs(sol_ode,t,0) == 2;
cond2 = subs(diff(sol_ode,t),t,0) == 1;
cond3 = subs(diff(sol_ode,t,2),t,0) == 3;
cond4 = subs(diff(sol_ode,t),t,1) - subs(diff(sol_ode,t),t,0) == s;
sol_cond = solve([cond1,cond2,cond3,cond4])
double(sol_cond.s)
sol_ode = simplify(subs(sol_ode,[vars(1),vars(2),vars(3),vars(4)],[sol_cond.C1,sol_cond.C2,sol_cond.C3,sol_cond.s]))
figure(1)
fplot(sol_ode,[0 1])
figure(2)
fplot(diff(sol_ode,t),[0 1])
figure(3)
fplot(diff(sol_ode,t,2),[0 1])
simplify(diff(sol_ode,t,3) -( -3/m*diff(sol_ode,t,2) + 1/m^2*(1-2*diff(sol_ode,t)+4*(subs(diff(sol_ode,t),t,1)-subs(diff(sol_ode,t),t,0)))))
2 Kommentare
Torsten
am 29 Mai 2023
A different method to solve the problem:
y0(1)=2;
y0(2)=1;
y0(3)=3;
source = 0.0;
solinit = bvpinit(linspace(0,1,100),y0,source);
sol = bvp4c(@mat4ode, @mat4bc, solinit);
sol.parameters
figure(1)
plot(sol.x,sol.y(1,:))
figure(2)
plot(sol.x,sol.y(2,:))
figure(3)
plot(sol.x,sol.y(3,:))
function dydx = mat4ode(x,y,source) % equation being solved
m = 0.05;
dydx = [y(2);y(3);-3/m*y(3)+1/(m.^2)*(1-2*y(2)+4.*source)];
end
function res = mat4bc(ya,yb,source) % boundary conditions
res = [ya(1)-2.0;ya(2)-1.0;ya(3)-3.0;yb(2)-1.0-source];
end
Siehe auch
Kategorien
Mehr zu Trimming and Linearization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!








