拉氏反变换出现一堆表达式,出不来结果。
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
wdretgd
am 25 Mai 2023
Beantwortet: wytxqerd
am 25 Mai 2023
求大神帮助指点,该怎么才能逆变换成功呢
ilaplace((10000000000*(22090000000000*s^3 + 47000000000*s^2 + 23525002209*s + 25000000))/(220900000000000000000000*s^4 + 470000000000000000000*s^3 + 470250044180000000000*s^2 + 500000047000000000*s + 249999953025002209))
ans =
7812500000000000*symsum(exp(t*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k))/(16*(2753906250000000000*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^2 + 1725781250000000122880*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^3 + 1836914235078125056*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k) + 976562591796875)), k, 1, 4) + 7351563190312500000*symsum((exp(root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)*t)*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k))/(16*(1836914235078125056*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k) + 2753906250000000000*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^2 + 1725781250000000122880*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^3 + 976562591796875)), k, 1, 4) + 14687500000000000000*symsum((exp(t*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k))*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^2)/(16*(2753906250000000000*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^2 + 1725781250000000122880*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^3 + 1836914235078125056*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k) + 976562591796875)), k, 1, 4) + 6903125000000000000000*symsum((exp(t*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k))*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^3)/(16*(2753906250000000000*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^2 + 1725781250000000122880*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k)^3 + 1836914235078125056*root(s4^4 + (179290771484375*s4^3)/84266662597656256 + (3587723115386963*s4^2)/1685333251953125120 + (195312518359375*s4)/86289062500000006144 + 7812498532031319/6903125000000000491520, s4, k) + 976562591796875)), k, 1, 4)
0 Kommentare
Akzeptierte Antwort
wytxqerd
am 25 Mai 2023
这也不算失败吧,只不过很多数值,因为涉及到求解一元四次方程,软件就写成"调用该方程的第几个根"的形式了,因为如果代入求根公式的话,表达式一般会更长。
使用vpa( ans, 2 )是可以查看将所有符号数值都转换为一定精度数值的表达式
得到
exp(-5.3e-4*t)*cos(0.033*t)*(0.25 + 4.1e-3i) + exp(-5.3e-4*t)*cos(0.033*t)*(0.25 - 4.1e-3i) + exp(-5.3e-4*t)*cos(0.033*t)*(0.25 - 4.1e-3i) + exp(-5.3e-4*t)*cos(0.033*t)*(0.25 + 4.1e-3i) + exp(-5.3e-4*t)*sin(0.033*t)*(4.1e-3 - 0.25i) + exp(-5.3e-4*t)*sin(0.033*t)*(4.1e-3 + 0.25i) + exp(-5.3e-4*t)*sin(0.033*t)*(4.1e-3 + 0.25i) + exp(-5.3e-4*t)*sin(0.033*t)*(4.1e-3 - 0.25i)
另外,如果用Mathematica的话,能求得
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!