已知函数表达式求参数值。

5 Ansichten (letzte 30 Tage)
tmgseur
tmgseur am 25 Mai 2023
Beantwortet: xpertwes am 25 Mai 2023
函数的表达式已知,4个变量已知3个,请问应如何求解剩下的那个参数r?我使用的是solve函数,运行后结果是一大串,没有求出正确结果。求大佬指教,万分感谢!
代码如下:
clc;
clear;
syms M r y L;
L = 17;
M = 0.125;
y = 20;
equ = r*L/12*(1-1/(1+r/12)^12*y) == M;
anws = solve(equ,r)
运行后结果
anws =
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 1)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 2)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 3)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 4)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 5)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 6)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 7)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 8)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 9)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 10)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 11)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 12)
root(z^13 + (4893*z^12)/34 + (161352*z^11)/17 + (6448464*z^10)/17 + (173923200*z^9)/17 + (3334877568*z^8)/17 + (46608224256*z^7)/17 + (478300889088*z^6)/17 + (3575727783936*z^5)/17 + (18978317107200*z^4)/17 + (67768555143168*z^3)/17 + (145443888562176*z^2)/17 - (2893274595459072*z)/17 - 13374150672384/17, z, 13)

Akzeptierte Antwort

xpertwes
xpertwes am 25 Mai 2023
高次方程,没有解析解的,只能求数值解。改成
anws = vpasolve( equ, r )
anws =
-27.398699670401662357941096866568
-0.0046214248194731798182544105886075
3.4362520546865551406937583681345
- 25.335080459266396406439624534127 + 7.7004435898659638427667228730945i
- 25.335080459266396406439624534127 - 7.7004435898659638427667228730946i
- 19.697139523608312629758161913957 + 13.337157865416479834106945429301i
- 19.697139523608312629758161913957 - 13.337157865416479834106945429301i
- 11.99543650427953166119760839527 - 15.399257163971993775718716159912i
- 11.99543650427953166119760839527 + 15.399257163971993775718716159912i
- 4.2931859647230990848983884585091 + 13.333233157998024397668224405529i
- 4.2931859647230990848983884585091 - 13.333233157998024397668224405529i
1.3484946192034535102383444622559 + 7.6902244752546745444820812532662i
1.3484946192034535102383444622559 - 7.6902244752546745444820812532662i
自己根据需要筛选合适的13个根中的某个或某几个
如果要求根为正实数,就只有一个

Weitere Antworten (0)

Kategorien

Mehr zu Formula Manipulation and Simplification finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!