Problem in using ddesd for a simple DDE with one dependent variable and two delay terms.
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Amirhossein Sadeghi Manesh
am 17 Mai 2023
Bearbeitet: Torsten
am 17 Mai 2023
Let's say we have only one independent variable t and one dependent variable x. Then consider the following DDE equation
![dx/dt = t*x(t-cos(t)) + t^2 * x(t-2) + t^3 ; t >= 0](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1386259/image.png)
and with the history
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1386264/image.png)
I guess I have to use ddesd as one of my term delays is not a constant delay, i.e. t-cos(t).
Reading the help page of ddesd (https://uk.mathworks.com/help/matlab/ref/ddesd.html) didn't make it clear for me how to do it. Here is my attempt.
sol = ddesd( @dde_equation, @delay, @history, [ 0, 1 ] );
t = sol.x;
x = sol.y;
plot(t, x);
xlabel('t');
ylabel('x(t)');
title('Solution of Delay Differential Equation');
% local functions
function dxdt = ddefun( t, x, Z )
dxdt = t * Z( 1, 1 ) + ( t ^ 2 ) * Z( 1, 2 ) + t ^ 3;
end
function d = delay( t )
d = [ delay1( t ); delay2( t ) ];
end
function d1 = delay1( t )
d1 = t - cos( t );
end
function d2 = delay2( t )
d2 = t - 2;
end
function v = history( t )
v = sin( t );
end
But I get the following error message
Error using Matlab_20230517_DDE_1>delay
Too many input arguments.
Error in ddesd>lagvals (line 549)
d = delays(tnow,ynow);
Error in ddesd (line 146)
Z0 = lagvals(t0,y0,delays,history,t0,y0,[]);
Error in Matlab_20230517_DDE_1 (line 1)
sol = ddesd( @dde_equation, @delay, @history, [ 0, 1 ] );
I would appreciate if someone let me know what is my mistake and how to solve the above DDE using Matlab. I found help pages and examples of DDE in Matlab help confusing and not really well explained.
0 Kommentare
Akzeptierte Antwort
Torsten
am 17 Mai 2023
sol = ddesd( @ddefun, @delay, @history, [ 0, 1 ] );
t = sol.x;
x = sol.y;
plot(t, x);
xlabel('t');
ylabel('x(t)');
title('Solution of Delay Differential Equation');
% local functions
function dxdt = ddefun( t, x, Z )
dxdt = t * Z( 1, 1 ) + ( t ^ 2 ) * Z( 1, 2 ) + t ^ 3;
end
function d = delay( t, x )
d = [ delay1( t ); delay2( t ) ];
end
function d1 = delay1( t )
d1 = t - cos( t );
end
function d2 = delay2( t )
d2 = t - 2;
end
function v = history( t )
v = sin( t );
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Delay Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!