Defining formulas for diagonal and offdiagonal elements of a matrix
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jeong Ho
am 2 Apr. 2015
Kommentiert: Jeong Ho
am 2 Apr. 2015
I have a vector M. I want to create a matrix s.t.
A(j,j) = M(j)*(1 + (M(j)-1)*roh_w)
A(j,k) = M(j)*M(k)*roh_b, whenever j!=k.
I can do
A = diag(M.*(1+(M-1)*roh_w) - M.^2*roh_b);
A = A + M.'*M*roh_b;
i.e., I first create a diagonal matrix s.t.
A(j,j) = M(j)*(1 + (M(j)-1)*roh_w) - M(j)*M(k)*roh_b,
I then add a matrix whose effect is canceled out by the second term right above for diagonal elements. Is there a prettier way of doing this?
Quintessentially, is there a one-liner code s.t. you give formula for diagonal elements and nondiagonal elements, e.g., A = FUNCTION(formula for diagonal elements, formula for nondiagonal elements)?
I'd appreciate any and all help. Thank you
Best, John
0 Kommentare
Akzeptierte Antwort
Roger Stafford
am 2 Apr. 2015
A = eye(length(M))*f1+(1-eye(length(M))*f2;
where f1 is the formula for the diagonal elements and f2 that for the off-diagonal elements.
2 Kommentare
Roger Stafford
am 2 Apr. 2015
The following is preferable. Let M be a row vector of size 1-by-m.
A = diag(M.*(1+(M-1)*roh_w))+(1-eye(m)).*(M.'*(M*roh_b));
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Operating on Diagonal Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!