(Answers Dev) Restored edit
I am getting the following error: Error using atan2 Inputs must be real. Error in (line 27) phi_vet = 2*atan2(-k_1-sqrt(k_1.^2+k_2.^2-k_3.2),k_3-k_2);
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Rafay Khan
am 24 Apr. 2023
Bearbeitet: Rafay Khan
am 5 Jun. 2023
I have followed the same steps for the double rocker code as I have for the double-crank code, which seemingly works perfectly. I don't understand why the double-rocker code produces an error. Both codes are below.
Double - crank code:
clear ; close all ; clc
%% Parameters
% Bars
l_1 = 0.5; % Length bar a [m]
l_2 = 1.55; % Length bar b [m]
l_3 = 1.3; % Length bar c [m]
l_0 = 1; % Length bar d [m]
% Video
tF = 10; % Final time [s]
fR = 60; % Frame rate [fps]
dt = 1/fR; % Time resolution [s]
time = linspace(0,tF,tF*fR); % Time [s]
% Bar a rotation
w = 2; % Angular velocity [rad/s]
th_vet = w*time';
% Definitions
k_1 = -2*l_0*l_3*sin(th_vet);
k_2 = 2*l_3*(l_1-l_0*cos(th_vet));
k_3 = l_1^2 + l_0^2 - l_2^2 + l_3^2 - 2*l_1*l_0*cos(th_vet);
% phi
phi_vet = 2*atan2(-k_1-sqrt(k_1.^2+k_2.^2-k_3.^2),k_3-k_2);
% alpha
alpha_vet = atan2(-l_0*sin(th_vet)+l_3*sin(phi_vet),l_1-l_0*cos(th_vet)+l_3*cos(phi_vet));
point_A_x_cum = l_0*cos(th_vet); % Point A cummulative
point_A_y_cum = l_0*sin(th_vet); % Point A cummulative
point_B_x_cum = l_1+l_3*cos(phi_vet); % Point B cummulative
point_B_y_cum = l_3*sin(phi_vet); % Point B cummulative
%% Animation
color = cool(5); % Colormap
figure
% set(gcf,'Position',[50 50 1280 720]) % YouTube: 720p
% set(gcf,'Position',[50 50 854 480]) % YouTube: 480p
set(gcf,'Position',[50 50 640 640]) % Social
hold on ; grid on ; box on ; axis equal
set(gca,'FontName','Verdana','FontSize',18)
title('Four-bar linkage')
% Create and open video writer object
v = VideoWriter('four_bar_linkage.mp4','MPEG-4');
v.Quality = 100;
v.FrameRate = fR;
open(v);
for i=1:length(time)
cla
% Angles
th = th_vet(i);
phi = phi_vet(i);
alpha = alpha_vet(i);
% Bar 1
bar_1_x = [0 l_0*cos(th)];
bar_1_y = [0 l_0*sin(th)];
% Bar 2
bar_2_x = [l_0*cos(th) l_0*cos(th)+l_2*cos(alpha)];
bar_2_y = [l_0*sin(th) l_0*sin(th)+l_2*sin(alpha)];
% Bar 3
bar_3_x = [l_1 l_1+l_3*cos(phi)];
bar_3_y = [0 l_3*sin(phi)];
% Trajectory
% Point A
plot(point_A_x_cum(1:i),point_A_y_cum(1:i),'Color',color(1,:),'LineWidth',3) % Point A trajectory
% Point B
plot(point_B_x_cum(1:i),point_B_y_cum(1:i),'Color',color(5,:),'LineWidth',3) % Point B trajectory
% Fixed bar
plot([bar_1_x(1) bar_3_x(1)],[0 0],'k','LineWidth',7) % Bar 0
% Bars attached to fixed bar
plot(bar_1_x,bar_1_y,'Color',color(2,:),'LineWidth',7) % Bar 1
plot(bar_3_x,bar_3_y,'Color',color(4,:),'LineWidth',7) % Bar 3
% Bearings
plot(bar_1_x(1),bar_1_y(1),'k^','MarkerFaceColor','k','MarkerSize',15) % Point O
plot(bar_3_x(1),bar_3_y(1),'k^','MarkerFaceColor','k','MarkerSize',15) % Point O'
% Bar 2
plot(bar_2_x,bar_2_y,'Color',color(3,:),'LineWidth',7) % Bar 2
% Points
plot(bar_2_x(1),bar_2_y(1),'ko','MarkerFaceColor',color(1,:),'MarkerSize',10) % Point A
plot(bar_3_x(end),bar_3_y(end),'ko','MarkerFaceColor',color(5,:),'MarkerSize',10) % Point B
%Setting axes limits
x_range = [point_A_x_cum ; point_B_x_cum];
y_range = [point_A_y_cum ; point_B_y_cum];
grid on;
set(gca,'xlim',[min(x_range)-0.2*(max(x_range)-min(x_range))
max(x_range)+0.2*(max(x_range)-min(x_range))]...
,'ylim',[min(y_range)-0.2*(max(y_range)-min(y_range))
max(y_range)+0.2*(max(y_range)-min(y_range))])
set(gca,'xtick',[],'ytick',[])
frame = getframe(gcf);
writeVideo(v,frame);
end
close(v);
Double - Rocker code:
clear ; close all ; clc
%% Parameters
% Bars
l_1 = 1.3; % Length bar a [m]
l_2 = 1.55; % Length bar b [m]
l_3 = 0.5; % Length bar c [m]
l_0 = 1; % Length bar d [m]
% Video
tF = 10; % Final time [s]
fR = 60; % Frame rate [fps]
dt = 1/fR; % Time resolution [s]
time = linspace(0,tF,tF*fR); % Time [s]
% Bar a rotation
w = 2; % Angular velocity [rad/s]
th_vet = w*time';
% Definitions
k_1 = -2*l_1*l_3*sin(th_vet);
k_2 = 2*l_3*(l_0-l_1*cos(th_vet));
k_3 = l_0^2 + l_1^2 - l_2^2 + l_3^2 - 2*l_0*l_1*cos(th_vet);
% phi
phi_vet = double(2*atan2(-k_1-sqrt(k_1.^2+k_2.^2-k_3.^2),k_3-k_2));
% alpha
alpha_vet = atan2(-l_1*sin(th_vet)+l_3*sin(phi_vet),l_0-l_1*cos(th_vet)+l_3*cos(phi_vet));
point_A_x_cum = l_1*cos(th_vet); % Point A cummulative
point_A_y_cum = l_1*sin(th_vet); % Point A cummulative
point_B_x_cum = l_0+l_3*cos(phi_vet); % Point B cummulative
point_B_y_cum = l_3*sin(phi_vet); % Point B cummulative
%% Animation
color = cool(5); % Colormap
figure
% set(gcf,'Position',[50 50 1280 720]) % YouTube: 720p
% set(gcf,'Position',[50 50 854 480]) % YouTube: 480p
set(gcf,'Position',[50 50 640 640]) % Social
hold on ; grid on ; box on ; axis equal
set(gca,'FontName','Verdana','FontSize',18)
title('Four-bar linkage')
% Create and open video writer object
v = VideoWriter('double_rocker_four_bar_linkage.mp4','MPEG-4');
v.Quality = 100;
v.FrameRate = fR;
open(v);
for i=1:length(time)
cla
% Angles
th = th_vet(i);
phi = phi_vet(i);
alpha = alpha_vet(i);
% Bar 1
bar_1_x = [0 l_1*cos(th)];
bar_1_y = [0 l_1*sin(th)];
% Bar 2
bar_2_x = [l_1*cos(th) l_1*cos(th)+l_2*cos(alpha)];
bar_2_y = [l_1*sin(th) l_1*sin(th)+l_2*sin(alpha)];
% Bar 3
bar_3_x = [l_0 l_0+l_3*cos(phi)];
bar_3_y = [0 l_3*sin(phi)];
% Trajectory
% Point A
plot(point_A_x_cum(1:i),point_A_y_cum(1:i),'Color',color(1,:),'LineWidth',3) % Point A trajectory
% Point B
plot(point_B_x_cum(1:i),point_B_y_cum(1:i),'Color',color(5,:),'LineWidth',3) % Point B trajectory
% Fixed bar
plot([ bar_3_x(1)],[0 0],'k','LineWidth',7) % Bar 0
% Bars attached to fixed bar
plot(bar_1_x,bar_1_y,'Color',color(2,:),'LineWidth',7) % Bar 1
plot(bar_3_x,bar_3_y,'Color',color(4,:),'LineWidth',7) % Bar 3
% Bearings
plot(bar_1_x(1),bar_1_y(1),'k^','MarkerFaceColor','k','MarkerSize',15) % Point O
plot(bar_3_x(1),bar_3_y(1),'k^','MarkerFaceColor','k','MarkerSize',15) % Point O'
% Bar 2
plot(bar_2_x,bar_2_y,'Color',color(3,:),'LineWidth',7) % Bar 2
% Points
plot(bar_2_x(1),bar_2_y(1),'ko','MarkerFaceColor',color(1,:),'MarkerSize',10) % Point A
plot(bar_3_x(end),bar_3_y(end),'ko','MarkerFaceColor',color(5,:),'MarkerSize',10) % Point B
%Setting axes limits
x_range = [point_A_x_cum ; point_B_x_cum];
y_range = [point_A_y_cum ; point_B_y_cum];
set(gca,'xlim',[min(x_range)-0.2*(max(x_range)-min(x_range))
max(x_range)+0.2*(max(x_range)-min(x_range))]...
,'ylim',[min(y_range)-0.2*(max(y_range)-min(y_range))
max(y_range)+0.2*(max(y_range)-min(y_range))])
set(gca,'xtick',[],'ytick',[])
frame = getframe(gcf);
writeVideo(v,frame);
end
close(v);
Akzeptierte Antwort
chicken vector
am 24 Apr. 2023
Bearbeitet: chicken vector
am 24 Apr. 2023
The term inside the square roort has some negative values, thus producing imaginary numbers.
sqrt(k_1.^2+k_2.^2-k_3.^2)
I am not really sure about what k_1, k_2 and k_3 are, but I think the problem is related to the fact that in a double rocker the two side bars do not perform a complete rotation, but your code thinks they do, trying to use angles that are physically impossible to reach.
For example I see that the starting position of your animation is already infeasible.
If you share some of the theory you used for the code, I can probably be more helpful.
8 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Annotations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!