How do I find out the number of neurons in layers?

11 Ansichten (letzte 30 Tage)
Veronika
Veronika am 30 Mär. 2015
Beantwortet: Greg Heath am 1 Apr. 2015
Dear all,
I have this code for training neural network (RBF) :
load('trenovaci_modely1_velky')
disp('Trénovací modely byly načteny.')
P = [velky_tvar{1,:}];
T = [velky_tvar{2,:}];
net = newrb(P,T,0,0.3)
save net
disp('Neuronová síť byla uložena.')
I need to know how many neurons are in layers? Does anyone have any idea? Thank you for your answers.

Akzeptierte Antwort

Greg Heath
Greg Heath am 1 Apr. 2015
% newrb( x, t ,MSEgoal, spread, Nbmax, dNdisp )
% x - I x N matrix of N "I"nput vectors.
% t - O x N matrix of N "O"utput target vectors.
% MSEgoal - Mean squared error goal, default = 0.0.
% spread - Spread of radial basis functions, default = 1.0.
% Nbmax - Maximum number of basis neurons, default is N.
% dNdisp - Number of neurons to add between displays, default = 25.
'BUG: Output listing WILL SKIP line for neurons = 1 '
close all, clear all, clc
[ x, t ] = simplefit_dataset;
[ I N ] = size(x) % [ 1 94 ]
[ O N ] = size(t) % [ 1 94 ]
zx = zscore( x',1 )'; % Standardize to zero-mean/unit-variance
zt = zscore( t',1 )';
figure(1)
plot( zx, zt )
hold on
MSEgoal = 0.01*mean(var(zt',1)) % 0.01
spread = 1
Nbmax = N - 2*round(0.15*N) % 66 ~ 0.7*N
dNdisp = 1
[ net tr ] = newrb( zx, zt, MSEgoal, spread, Nbmax, dNdisp);
% NEWRB, neurons = 0, MSE = 1
' 'BUG: SKIPS neurons = 1 OUTPUT LISTING '
% NEWRB, neurons = 2, MSE = 0.272804
% NEWRB, neurons = 3, MSE = 0.267621
% NEWRB, neurons = 4, MSE = 0.181115
% NEWRB, neurons = 5, MSE = 0.0811973
% NEWRB, neurons = 6, MSE = 0.0246589
% NEWRB, neurons = 7, MSE = 0.0115911
% NEWRB, neurons = 8, MSE = 0.00415462
epochs = tr.epoch; MSE= tr.perf;
result = [ epochs' MSE' ]
% result = epoch MSE
% 0 1
% 1 0.29336
% 2 0.2728
% 3 0.26762
% 4 0.18112
% 5 0.081197
% 6 0.024659
% 7 0.011591
% 8 0.0041546
y = net(zx);
figure(1)
hold on
plot( zx, y, 'r.')
e = zt-y;
NMSE = mse(e) %0.004154
Nw = net.numWeightElements % 25
H = (Nw-O)/(I+1+O) % 8
H = size(net.IW{1},1)
H = size(net.b{1},1)
H = size(net.LW{2},2)
Hope this helps
Thank you for formally accepting my answer.
Greg

Weitere Antworten (1)

Vinod Sudheesh
Vinod Sudheesh am 1 Apr. 2015
You could do this by querying the "size" property of each of the individual neural network layers. For example, please see the code snippet below:
>> net=feedforwardnet([10 11 12]);
>> net.layers{1}.size
>> net.layers{2}.size
>> net.layers{3}.size
  1 Kommentar
Greg Heath
Greg Heath am 1 Apr. 2015
Not for NEWRB!
If [ I N] = size(input) [ O N ] = size(target)
the initial pretraining topology is I-O and the final postraining topology will be I-H-O.
However, H is unknown until the training is complete.

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by