what's wrong my code about ode model
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I wirte this code 'ode_fun'
function dydt = ode_fun(t, y, params)
% Unpack the input variables
C = y(1);
A = y(2);
I = y(3);
E = y(4);
S = y(5);
% Unpack the parameter values
k = params(1);
r_C = params(2);
r_max = params(3);
r_A = params(4);
delta_A = params(5);
r_I = params(6);
delta_I = params(7);
r_E = params(8);
Eprime = params(9);
beta = params(10);
gamma = params(11);
r_S = params(12);
Sprime = params(13);
% Compute f(C)
f_C = min(r_C * (1 - C / Cprime), r_max);
% Compute the derivatives
dCdt = f_C * C - k * C * E;
dAdt = r_A * C - delta_A * A;
dIdt = r_I * C * E - delta_I * I;
dEdt = -r_E * (E - Eprime) + beta * A * I * E * S - gamma * E * S;
dSdt = -r_S * (S - Sprime) - beta * A * I * E * S + gamma * E * S;
% Pack the output variables into dydt
dydt = [dCdt; dAdt; dIdt; dEdt; dSdt];
end
but this code doesn't work
This code has problem about line4
And say that Insufficient input arguments.
So, I don't use next code..
% Define the parameter values
k = 1.2; %killing rate of cancer cells by T cells
r_C = 1/1.0; % Logistic growth rate of cancer
r_max = 1/0.09; % Maximum growth rate of cancer
r_A = 0.5; % Antigen presentatation source rate
delta_A = 1/0.8; % Antigen presentatation degradation rate
r_I = 0.4; % Inflammation source rate
delta_I = 1/3.0; % Inflammation degradation rate
r_E = 1/1.0; % Effector T cell growth coefficient
Eprime = 5.0; % Effector T cell base steady state
beta = 0.009; % Effector T cell recruitment coefficient
gamma = 37.414; % Non-effector T cell recruitment coefficient
r_S = 1/1.0; % Non-effector T cell growth coefficient
Sprime = 5.0; % Non-effector T cell base steady state
% Define the initial conditions
C0 = 1.0;
A0 = 0.0;
I0 = 0.0;
E0 = 0.5;
S0 = 4.5;
% Define the time span
tspan = [0 50];
% Solve the ODE system
[t,y] = ode45(@(t,y) ode_fun(t,y,k,r_C,r_max,r_A,delta_A,r_I,delta_I,r_E,Eprime,beta,gamma,r_S,Sprime),tspan,[C0 A0 I0 E0 S0]);
% Plot the results
figure
plot(t,y(:,1),'LineWidth',2)
xlabel('Time')
ylabel('Cancer Cells')
title('Cancer Growth Over Time')
I want to run this code but I don't know how to write it. Any help please?
1 Kommentar
Dyuman Joshi
am 21 Apr. 2023
1 - The ODE function goes at the bottom of the code if your code is a script.
2 - You are passing all the variables from k to S_prime to the ODE function, but your syntax is incorrect. Either define the array params using the variables or pass each variable directly.
3 - You have not defined the variable C_prime.
Akzeptierte Antwort
Torsten
am 21 Apr. 2023
Bearbeitet: Torsten
am 21 Apr. 2023
What is Cprime ?
% Define the parameter values
k = 1.2; %killing rate of cancer cells by T cells
r_C = 1/1.0; % Logistic growth rate of cancer
r_max = 1/0.09; % Maximum growth rate of cancer
r_A = 0.5; % Antigen presentatation source rate
delta_A = 1/0.8; % Antigen presentatation degradation rate
r_I = 0.4; % Inflammation source rate
delta_I = 1/3.0; % Inflammation degradation rate
r_E = 1/1.0; % Effector T cell growth coefficient
Eprime = 5.0; % Effector T cell base steady state
beta = 0.009; % Effector T cell recruitment coefficient
gamma = 37.414; % Non-effector T cell recruitment coefficient
r_S = 1/1.0; % Non-effector T cell growth coefficient
Sprime = 5.0; % Non-effector T cell base steady state
% Define the initial conditions
C0 = 1.0;
A0 = 0.0;
I0 = 0.0;
E0 = 0.5;
S0 = 4.5;
% Define the time span
tspan = [0 50];
% Solve the ODE system
[t,y] = ode45(@(t,y) ode_fun(t,y,[k,r_C,r_max,r_A,delta_A,r_I,delta_I,r_E,Eprime,beta,gamma,r_S,Sprime]),tspan,[C0 A0 I0 E0 S0]);
% Plot the results
figure
plot(t,y(:,1),'LineWidth',2)
xlabel('Time')
ylabel('Cancer Cells')
title('Cancer Growth Over Time')
function dydt = ode_fun(t, y, params)
% Unpack the input variables
C = y(1);
A = y(2);
I = y(3);
E = y(4);
S = y(5);
% Unpack the parameter values
k = params(1);
r_C = params(2);
r_max = params(3);
r_A = params(4);
delta_A = params(5);
r_I = params(6);
delta_I = params(7);
r_E = params(8);
Eprime = params(9);
beta = params(10);
gamma = params(11);
r_S = params(12);
Sprime = params(13);
% Compute f(C)
f_C = min(r_C * (1 - C / Cprime), r_max);
% Compute the derivatives
dCdt = f_C * C - k * C * E;
dAdt = r_A * C - delta_A * A;
dIdt = r_I * C * E - delta_I * I;
dEdt = -r_E * (E - Eprime) + beta * A * I * E * S - gamma * E * S;
dSdt = -r_S * (S - Sprime) - beta * A * I * E * S + gamma * E * S;
% Pack the output variables into dydt
dydt = [dCdt; dAdt; dIdt; dEdt; dSdt];
end
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!