How do I take natural logarithm of a set of datas and do a least square fitting and get an expression?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a set of 3 datas. i.e. one set of dependent variables and 2 set of independent variables. I want to use natural logarithms on these datas and use least square fitting to obtain a relationship between these three set of datas
% Dependent varaibales:
psi_o= [1.0690 2.02 1.3474 1.3580 1.3966 1.6701 1.4901 1.669 1.476 2.848 1.3871 2.8008 3.0724 2.3614 2.7726];
psi_1= [1.0431 1.1251 0.9519 0.9691 0.9380 1.5003 1.2390 1.3260 1.2584 2.848 1.2260 1.9754 2.125 1.6842 2.098];
psi_2= [0.9819 0.9916 1.0444 0.9938 0.9807 1.3555 1.2052 1.227 1.1849 1.747 1.2106 1.5462 1.6876 1.5860 1.726];
psi_3= [1.015 0.9875 1.0682 1.0763 1.0021 1.295 1.119 1.1112 1.125 1.681 1.1667 1.6932 1.862 1.677 1.6443 ];
% Independent variables :
We= [8.518 9.903 16.473 22.68 26.214 58.84 78.77 117.76 138.37 184.842 193.155 272.054 327.49 443.05 615.34];
Lambda= [1 0.701 0.501 0.397];
Here, for the dependent variable data set 'psi_o ' the independent variables are the whole data set of 'We' and only for Lambda =1, likewise 'psi_1' corresponds to We and Lambda = 0.701, similarly for psi_2 ansd psi_3 it the whole data set We and only Lambda = 0.501 and 0.397 respectively.
So how do I take the logarithms of all the values and obtain a relationship between psi_1,2,3 ; We; Lambda through least square fitting?
4 Kommentare
Shree Charan
am 2 Jun. 2023
% Dependent varaibales:
psi_o= [1.0690 2.02 1.3474 1.3580 1.3966 1.6701 1.4901 1.669 1.476 2.848 1.3871 2.8008 3.0724 2.3614 2.7726];
psi_1= [1.0431 1.1251 0.9519 0.9691 0.9380 1.5003 1.2390 1.3260 1.2584 2.848 1.2260 1.9754 2.125 1.6842 2.098];
psi_2= [0.9819 0.9916 1.0444 0.9938 0.9807 1.3555 1.2052 1.227 1.1849 1.747 1.2106 1.5462 1.6876 1.5860 1.726];
psi_3= [1.015 0.9875 1.0682 1.0763 1.0021 1.295 1.119 1.1112 1.125 1.681 1.1667 1.6932 1.862 1.677 1.6443 ];
% Independent variables :
We= [8.518 9.903 16.473 22.68 26.214 58.84 78.77 117.76 138.37 184.842 193.155 272.054 327.49 443.05 615.34];
lambda= [1 0.701 0.501 0.397];
log_psi_0 = log(psi_o);
log_psi_1 = log(psi_1);
log_psi_2 = log(psi_2);
log_psi_3 = log(psi_3);
log_We = log(We);
X(:,1) = lambda(1)*log_We;
X(:,2) = lambda(2)*log_We;
X(:,3) = lambda(3)*log_We;
X(:,4) = lambda(4)*log_We;
Y = [log_psi_0', log_psi_1', log_psi_2', log_psi_3'];
B = X\Y;
B should have the coefficients for the relationship between 'psi_o', 'psi_1', 'psi_2' and 'psi_3', however the rank of X =1 indicating some sort of dependancy among 'lambda' and 'We'.
Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!