ode45 with a array of vector
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am solving 6 ODEs simultaneously. My eqns are:
eq1 = diff(x,t) == u1+vp.*p1 ;
eq2 = diff(y,t) == u2+vp.*p2 ;
eq3 = diff(z,t) == u3+vp.*p3 ;
eq1 = diff(p1,t) == a1*p1+a2*p2+a3*p3 ;
eq2 = diff(p2,t) == b1*p1+b2*p2+b3*p3 ;
eq3 = diff(p3,t) == c1*p1+c2*p2+c3*p3 ;
Here, a1, a2, a3, b1, b2 b3, c1, c2, c3 and vp are constants.
u1, u2, and u3 are vector of dimension [1 X 100]. Each values of u1, u2, and u3 corresponds to time points in tValues = linspace(0,10,100). I want to compute p1, p2, p3 and x, y, z for tValues = linspace(0,10,100).
My code is following: ;
vars = [x(t); z(t); y(t); p1(t); p2(t); p3(t)];
V = odeToVectorField([eq2 eq1 eq3 eq4 eq5 eq6]);
M = matlabFunction(V,'vars', {'t','Y'});
y0=[0 0 0 p1_0 p2_0 p3_0];
ySol_a = ode45(M,interval,y0);
Once the code is run, it shows following error message:
MuPAD error: Error: Cannot convert the initial value problem to an equivalent dynamical system. Either the differential equations cannot be solved for the highest derivatives or inappropriate initial conditions were specified. [numeric::ode2vectorfield]
0 Kommentare
Akzeptierte Antwort
Torsten
am 23 Mär. 2023
a1 = ...;
a2 = ...;
a3 = ...;
b1 = ...;
b2 = ...;
b3 = ...;
c1 = ...;
c2 = ...;
c3 = ...;
vp = ...;
tValues = linspace(0,10,100);
u1Values = ...;
u2Values = ...;
u3Values = ...;
u1fun = @(t)interp1(tValues,u1Values,t);
u2fun = @(t)interp1(tValues,u2Values,t);
u3fun = @(t)interp1(tValues,u3Values,t);
fun = @(t,y)[u1fun(t)+vp*y(4);u2fun(t)+vp*y(5);u3fun(t)+vp*y(6);a1*y(4)+a2*y(5)+a3*y(6);b1*y(4)+b2*y(5)+b3*y(6);c1*y(4)+c2*y(5)+c3*y(6)];
tspan = tValues;
p1_0 = ...;
p2_0 = ...;
p3_0 = ...;
y0 = [0 0 0 p1_0 p2_0 p3_0];
[T,Y] = ode45(fun,tspan,y0);
plot(T,Y)
6 Kommentare
Torsten
am 25 Mär. 2023
How do I provide this dynamic initial condition?
I think I answered this already. An initial condition is not dynamic.
If you want to set
v1(t) = constant1 + vp*p1,
v2(t) = constant2 + vp*p2,
v3(t) = constant3 + vp*p3
your equations to integrate become
diff(x,t) = constant1 + vp*p1
diff(y,t) = constant2 + vp*p2
diff(z,t) = constant3 + vp*p3
diff(p1,t) == JTx_1+JTx_2+JTx_3;
diff(p2,t) == JTy_1+JTy_2+JTy_3;
diff(p3,t) == JTz_1+JTz_2+JTz_3;
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!