Create feedforward ANN specifying number of input /output variables, hidden layer, weight and bias vales without dataset
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
We want to create feedforward net of given topology, e.g. one input layer with 3 nurone, one hidden layer 5 nurone, and output layer with 2 nurone. Additionally, We want to specify (not view or readonly) the weight and bias values, transfer functions of our choice. The feedforward net (without training) will be used to predict 2x1 output from 3x1 input. Basically Y=LWi*tansig(IWi*X'+bias1)+bias2 serves our purpose, but we want it is wrapped in a networkobject not as eqn. We donot want to configure it by presenting dataset in hand, which we donot have. Looking a guidence where we can use a syntax similar to this net = network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConnect)
0 Kommentare
Antworten (1)
Sanjana
am 29 Mär. 2023
Hi,
I understand that you need help with creating a custom feedforward neural network.You can use the “network” function in MATLAB, and create a feedforward ANN using the below syntax,
net=network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConnect)
Please refer to the below link for detailed explanation,
Hope this helps!
Siehe auch
Kategorien
Mehr zu Function Approximation and Clustering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!