which of the following sets vectors are independent?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How to use function rank to judge" sint,cost,cos(2t)" are independent vectors??
0 Kommentare
Akzeptierte Antwort
Torsten
am 17 Mär. 2023
Bearbeitet: Torsten
am 17 Mär. 2023
In order to prove that sin(t), cos(t) and cos(2*t) are independent, you have to show that if
f(t) = a*sin(t) + b*cos(t) + c*cos(2*t)
for scalars a, b, c in IR is the identical null function (i.e. f(t) = 0 for all t), then a,b and c must all be zero.
So assume f is the null function.
Then the expression a*sin(t) + b*cos(t) + c*cos(2*t) will give zero especially when you insert t=0, t=pi/2 and t=pi.
See what follows for a,b and c by setting up the corresponding (3x3) linear system of equations for a, b and c and solving it - maybe by determining the rank of the coefficient matrix, if your assignment says you should do so.
5 Kommentare
Torsten
am 18 Mär. 2023
The dimension of the three vectors is not infinity and such a thing as a "rank" for functions does not exist.
To determine whether the three functions span a three-dimensional vector space, you can either proceed as I suggested or - if you already heard about this in your course - use the Wronskian:
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!