how to convert tranfer function into a polynomial function?

14 Ansichten (letzte 30 Tage)
H
H am 12 Mär. 2023
Beantwortet: Sam Chak am 12 Mär. 2023
I have got an transfer function which is having a relative degree of 4 or higher. I want to find out the gain for root locus based design for a given dominant pole. for the Transfer function I have got i need to substitute the value of s. for that i need to convert Transfer function into a polynomial so that i can use substitution operation.
  3 Kommentare
H
H am 12 Mär. 2023
also is there a way to convert transfer function to polynomial or symbolic?
H
H am 12 Mär. 2023
i have an open loop transfer function C*P= 1.656e09 s^4 + 2.751e12 s^3 + 1.196e15 s^2 + 4.445e16 s + 4.433e15
------------------------------------------------------------------------------------
25 s^7 + 75982 s^6 + 8.552e07 s^5 + 4.409e10 s^4 + 1.057e13 s^3 + 1.049e15 s^2
+ 2.797e16 s
i am finding the closed loop Transfer function =CP/(1+CP) but the matlab is not solving it properly
like I am getting 4.14e10 s^11 + 1.946e14 s^10 + 3.805e17 s^9 + 4.003e20 s^8 + 2.445e23 s^7
+ 8.735e25 s^6 + 1.754e28 s^5 + 1.802e30 s^4 + 8.014e31 s^3 + 1.248e33 s^2
+ 1.24e32 s
---------------------------------------------------------------------------------------
625 s^14 + 3.799e06 s^13 + 1.005e10 s^12 + 1.524e13 s^11 + 1.474e16 s^10 + 9.58e18 s^9
+ 4.313e21 s^8 + 1.36e24 s^7 + 2.964e26 s^6 + 4.218e28 s^5 + 3.494e30 s^4
+ 1.388e32 s^3 + 2.031e33 s^2 + 1.24e32 s
instead of 1.656e09 s^4 + 2.751e12 s^3 + 1.196e15 s^2 + 4.445e16 s + 4.433e15
-----------------------------------------------------------------------------------
25 s^7 + 75982 s^6 + 8.552e07 s^5 + 4.574e10 s^4 + 1.332e13 s^3 + 2.245e15 s^2
+ 7.243e16 s + 4.433e15.??

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Sam Chak
Sam Chak am 12 Mär. 2023
Hi @H
I think you use the minreal() and tfdata() function.
s = tf('s');
ncp = 1.656e09*s^4 + 2.751e12*s^3 + 1.196e15*s^2 + 4.445e16*s + 4.433e15;
dcp = 25*s^7 + 75982*s^6 + 8.552e07*s^5 + 4.409e10*s^4 + 1.057e13*s^3 + 1.049e15*s^2 + 2.797e16*s;
G = ncp/dcp;
Gcl = feedback(G, 1)
Gcl = 1.656e09 s^4 + 2.751e12 s^3 + 1.196e15 s^2 + 4.445e16 s + 4.433e15 ------------------------------------------------------------------------------------------------------ 25 s^7 + 75982 s^6 + 8.552e07 s^5 + 4.575e10 s^4 + 1.332e13 s^3 + 2.245e15 s^2 + 7.242e16 s + 4.433e15 Continuous-time transfer function.
Gcl = minreal(Gcl)
Gcl = 6.624e07 s^4 + 1.1e11 s^3 + 4.784e13 s^2 + 1.778e15 s + 1.773e14 ------------------------------------------------------------------------------------------------ s^7 + 3039 s^6 + 3.421e06 s^5 + 1.83e09 s^4 + 5.328e11 s^3 + 8.98e13 s^2 + 2.897e15 s + 1.773e14 Continuous-time transfer function.
[num,den] = tfdata(Gcl, 'v')
num = 1×8
1.0e+15 * 0 0 0 0.0000 0.0001 0.0478 1.7780 0.1773
den = 1×8
1.0e+15 * 0.0000 0.0000 0.0000 0.0000 0.0005 0.0898 2.8968 0.1773

Kategorien

Mehr zu Dynamic System Models finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by