How to MATLAB function using parallel Pooling

1 Ansicht (letzte 30 Tage)
SH
SH am 10 Mär. 2023
Kommentiert: Raymond Norris am 10 Mär. 2023
I have a MATLAB function and a dataset that I would like to run in parallel on the CPU. Specifically, I would like to compare the performance of running the function with and without parallelization
I also attached my Dataset below
Please help me with this, I know parfor is used but i am unable to used that
load('Dataset.mat')
clusternumber = 6;
function [Score] = Scorefunction(Dataset,clusternumber)
dataset_len = size(Dataset,1);
Score = zeros(1,clusternumber);
for j=1:clusternumber
[cluster_assignments,centroids] = kmeans(Dataset,j);
distance_within=zeros(dataset_len,1);
distance_between=Inf(dataset_len,j);
for i=1:dataset_len
for jj=1:j
boo=cluster_assignments==cluster_assignments(i);
Xsamecluster=Dataset(boo,:);
if size(Xsamecluster,1)>1
distance_within(i)=sum(sum((Dataset(i,:)-Xsamecluster).^2,2))/(size(Xsamecluster,1)-1);
end
boo1= cluster_assignments~=cluster_assignments(i);
Xdifferentcluster=Dataset(boo1 & cluster_assignments ==jj,:);
if ~isempty(Xdifferentcluster)
distance_between(i,jj)=mean(sum((Dataset(i,:)-Xdifferentcluster).^2,2));
end
end
end
minavgDBetween = min(distance_between, [], 2);
silh = (minavgDBetween - distance_within) ./ max(distance_within,minavgDBetween);
Score(j) =mean(silh);
end
end

Antworten (0)

Kategorien

Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by