I get this error trying to find Hausdorff dist Array formation and parentheses-style indexing with objects of class 'matlab.io​.datastore​.PixelLabe​lDatastore​' is not allowed.

3 Ansichten (letzte 30 Tage)
I am trying to test the performance of my trained network and I get the following error:
[hd D] = HausdorffDist(pxdsResults,pxdsTruth,0);
Array formation and parentheses-style indexing with objects of
class 'matlab.io.datastore.PixelLabelDatastore' is not allowed.
Use objects of class 'matlab.io.datastore.PixelLabelDatastore'
only as scalars or use a cell array.
Error in HausdorffDist (line 120)
cP=P(combos(:,1),:);
This is my code :
clear all
close all
clc
dataSetDir = fullfile('LungTS','preprocessedDataset');
testImagesDir = fullfile(dataSetDir,'imagesTest');
imdReader = @(x) matRead(x);
imds = imageDatastore(testImagesDir, ...
'FileExtensions','.mat','ReadFcn',imdReader);
%imds = imageDatastore(testImagesDir);
% classNames = ["nodule" "background"];%The labels for results are ["background" "tumor"], so we should use the same label
classNames = ["background" "tumor"];%%%I add this line.
% labelIDs = [255 0];%The numbers in corresponding .mat data are 0 and 1 (not 0 and 255).
labelIDs = [0 1];%I add this line
labelReader = @(x) matRead(x);
testLabelsDir = fullfile(dataSetDir,'labelsTest');
pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs, ...
'FileExtensions','.mat','ReadFcn',labelReader);
net = load('HybridNetwork-160');
net = net.net;
pxdsResults = semanticseg(imds,net,"WriteLocation",tempdir);
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);
metrics.ClassMetrics
metrics.ConfusionMatrix
cm = confusionchart(metrics.ConfusionMatrix.Variables, ...
classNames, 'Normalization','row-normalized');%The format corrected.
% classNames, Normalization ='row-normalized');%Wrong format
cm.Title = 'Normalized Confusion Matrix (%)';
imageIoU = metrics.ImageMetrics.MeanIoU;
%figure
%histogram(imageIoU)
%title('Image Mean IoU')
[minIoU, worstImageIndex] = min(imageIoU);
minIoU = minIoU(1);
worstImageIndex = worstImageIndex(1);
worstTestImage = readimage(imds,worstImageIndex);%ehsan: %size is [32 32 32]
worstTrueLabels = readimage(pxdsTruth,worstImageIndex);
worstPredictedLabels = readimage(pxdsResults,worstImageIndex);
worstTrueLabelImage = im2uint8(worstTrueLabels == classNames(1));%ehsan: %size is [32 32 32]
worstPredictedLabelImage = im2uint8(worstPredictedLabels == classNames(1));%ehsan: %size is [32 32 32]
figure,subplot(1,3,1),montage(worstTestImage,'Size',[8 4]),title('Worst Test Image')
subplot(1,3,2),montage(worstTrueLabelImage,'Size',[8 4]),title('Truth')
subplot(1,3,3),montage(worstPredictedLabelImage,'Size',[8 4]),title(['Prediction. IoU = ', num2str(minIoU)])
% title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(minIoU)])
[maxIoU, bestImageIndex] = max(imageIoU);
maxIoU = maxIoU(1);
bestImageIndex = bestImageIndex(1);
bestTestImage = readimage(imds,bestImageIndex);
bestTrueLabels = readimage(pxdsTruth,bestImageIndex);
bestPredictedLabels = readimage(pxdsResults,bestImageIndex);
bestTrueLabelImage = im2uint8(bestTrueLabels == classNames(1));
bestPredictedLabelImage = im2uint8(bestPredictedLabels == classNames(1));
bestTrueLabelImage(bestTrueLabelImage==0)=2;
bestTrueLabelImage(bestTrueLabelImage==255)=0;
bestTrueLabelImage(bestTrueLabelImage==2)=255;
bestPredictedLabelImage(bestPredictedLabelImage==0)=2;
bestPredictedLabelImage(bestPredictedLabelImage==255)=0;
bestPredictedLabelImage(bestPredictedLabelImage==2)=255;
figure,subplot(1,3,1),montage(bestTestImage,'Size',[8 4]),title('Best Test Image')
subplot(1,3,2),montage(bestTrueLabelImage,'Size',[8 4]),title('Truth')
subplot(1,3,3),montage(bestPredictedLabelImage,'Size',[8 4]),title(['Prediction. IoU = ', num2str(maxIoU)])
% title(['Test Image vs. Truth vs. Prediction. IoU = ' num2str(maxIoU)])
evaluationMetrics = ["accuracy" "iou"];
metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth,"Metrics",evaluationMetrics);
metrics.ClassMetrics
confmat = metrics.ConfusionMatrix ;
TP = table2array(confmat(2, 2));
TN = table2array(confmat(1, 1));
FP = table2array(confmat(1, 2));
FN = table2array(confmat(2, 1));
Accuracy = (TP + TN) / (TP + TN + FP + FN)
Sensitivity = TP / (FN + TP)
specificity = TN / (TN + FP)
precision = (TP)/(TP+FP)
Dice=(2*TP)/(2*TP+FP+FN)
MCC=(TP*TN-FP*FN)/sqrt((TP+FN)*(TP+FP)*(TN+FP)*(TN+FN))
Recall=(TP/(TP+FN))
F_score =(2*TP)/((2*TP)+FP+FN)
[hd D] = HausdorffDist(pxdsResults,pxdsTruth,0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The folowing is the the hasdruf function I am using:
function [hd D] = HausdorffDist(P,Q,lmf,dv)
% Calculates the Hausdorff Distance between P and Q
%
% hd = HausdorffDist(P,Q)
% [hd D] = HausdorffDist(P,Q)
% [hd D] = HausdorffDist(...,lmf)
% [hd D] = HausdorffDist(...,[],'visualize')
%
% Calculates the Hausdorff Distance, hd, between two sets of points, P and
% Q (which could be two trajectories). Sets P and Q must be matrices with
% an equal number of columns (dimensions), though not necessarily an equal
% number of rows (observations).
%
% The Directional Hausdorff Distance (dhd) is defined as:
% dhd(P,Q) = max p c P [ min q c Q [ ||p-q|| ] ].
% Intuitively dhd finds the point p from the set P that is farthest from
% any point in Q and measures the distance from p to its nearest neighbor
% in Q.
%
% The Hausdorff Distance is defined as max{dhd(P,Q),dhd(Q,P)}
%
% D is the matrix of distances where D(n,m) is the distance of the nth
% point in P from the mth point in Q.
%
% lmf: If the size of P and Q are very large, the matrix of distances
% between them, D, will be too large to store in memory. Therefore, the
% function will check your available memory and not build the D matrix if
% it will exceed your available memory and instead use a faster version of
% the code. If this occurs, D will be returned as the empty matrix. You may
% force the code to forgo the D matrix even for small P and Q by calling the
% function with the optional 3rd lmf variable set to 1. You may also force
% the function to return the D matrix by setting lmf to 0. lmf set to []
% allows the code to automatically choose which mode is appropriate.
%
% Including the 'vis' or 'visualize' option plots the input data of
% dimension 1, 2 or 3 if the small dataset algorithm is used.
%
% Performance Note: Including the lmf input increases the speed of the
% algorithm by avoiding the overhead associated with checking memory
% availability. For the lmf=0 case, this may represent a sizeable
% percentage of the entire run-time.
%
%
% %%% ZCD Oct 2009 %%%
% Edits ZCD: Added the matrix of distances as an output. Fixed bug that
% would cause an error if one of the sets was a single point. Removed
% excess calls to "size" and "length". - May 2010
% Edits ZCD: Allowed for comparisons of N-dimensions. - June 2010
% Edits ZCD: Added large matrix mode to avoid insufficient memory errors
% and a user input to control this mode. - April 2012
% Edits ZCD: Using bsxfun rather than repmat in large matrix mode to
% increase performance speeds. [update recommended by Roel H on MFX] -
% October 2012
% Edits ZCD: Added a plotting function for visualization - October 2012
%
sP = size(P); sQ = size(Q);
if ~(sP(2)==sQ(2))
error('Inputs P and Q must have the same number of columns')
end
if nargin > 2 && ~isempty(lmf)
% the user has specified the large matrix flag one way or the other
largeMat = lmf;
if ~(largeMat==1 || largeMat==0)
error('3rd ''lmf'' input must be 0 or 1')
end
else
largeMat = 0; % assume this is a small matrix until we check
% If the result is too large, we will not be able to build the matrix of
% differences, we must loop.
if sP(1)*sQ(1) > 2e6
% ok, the resulting matrix or P-to-Q distances will be really big, lets
% check if our memory can handle the space we'll need
memSpecs = memory; % load in memory specifications
varSpecs = whos('P','Q'); % load in variable memory specs
sf = 10; % build in a saftey factor of 10 so we don't run out of memory for sure
if prod([varSpecs.bytes]./[sP(2) sQ(2)]) > memSpecs.MaxPossibleArrayBytes/sf
largeMat = 1; % we have now concluded this is a large matrix situation
end
end
end
if largeMat
% we cannot save all distances, so loop through every point saving only
% those that are the best value so far
maxP = 0; % initialize our max value
% loop through all points in P looking for maxes
for p = 1:sP(1)
% calculate the minimum distance from points in P to Q
minP = min(sum( bsxfun(@minus,P(p,:),Q).^2, 2));
if minP>maxP
% we've discovered a new largest minimum for P
maxP = minP;
end
end
% repeat for points in Q
maxQ = 0;
for q = 1:sQ(1)
minQ = min(sum( bsxfun(@minus,Q(q,:),P).^2, 2));
if minQ>maxQ
maxQ = minQ;
end
end
hd = sqrt(max([maxP maxQ]));
D = [];
else
% we have enough memory to build the distance matrix, so use this code
% obtain all possible point comparisons
iP = repmat(1:sP(1),[1,sQ(1)])';
iQ = repmat(1:sQ(1),[sP(1),1]);
combos = [iP,iQ(:)];
% get distances for each point combination
cP=P(combos(:,1),:);
cQ=Q(combos(:,2),:);
dists = sqrt(sum((cP - cQ).^2,2));
% Now create a matrix of distances where D(n,m) is the distance of the nth
% point in P from the mth point in Q. The maximum distance from any point
% in Q from P will be max(D,[],1) and the maximum distance from any point
% in P from Q will be max(D,[],2);
D = reshape(dists,sP(1),[]);
% Obtain the value of the point, p, in P with the largest minimum distance
% to any point in Q.
vp = max(min(D,[],2));
% Obtain the value of the point, q, in Q with the largets minimum distance
% to any point in P.
vq = max(min(D,[],1));
hd = max(vp,vq);
end
% - visualization ---
if nargin==4 && any(strcmpi({'v','vis','visual','visualize','visualization'},dv))
if largeMat == 1 || sP(2)>3
warning('MATLAB:actionNotTaken',...
'Visualization failed because data sets were too large or data dimensionality > 3.')
return;
end
% visualize the data
figure
subplot(1,2,1)
hold on
axis equal
% need some data for plotting
[mp ixp] = min(D,[],2);
[mq ixq] = min(D,[],1);
[mp ixpp] = max(mp);
[mq ixqq] = max(mq);
[m ix] = max([mq mp]);
if ix==2
ixhd = [ixp(ixpp) ixpp];
xyf = [Q(ixhd(1),:); P(ixhd(2),:)];
else
ixhd = [ixqq ixq(ixqq)];
xyf = [Q(ixhd(1),:); P(ixhd(2),:)];
end
% -- plot data --
if sP(2) == 2
h(1) = plot(P(:,1),P(:,2),'bx','markersize',10,'linewidth',3);
h(2) = plot(Q(:,1),Q(:,2),'ro','markersize',8,'linewidth',2.5);
% draw all minimum distances from set P
Xp = [P(1:sP(1),1) Q(ixp,1)];
Yp = [P(1:sP(1),2) Q(ixp,2)];
plot(Xp',Yp','-b');
% draw all minimum distances from set Q
Xq = [P(ixq,1) Q(1:sQ(1),1)];
Yq = [P(ixq,2) Q(1:sQ(1),2)];
plot(Xq',Yq','-r');
% denote the hausdorff distance
h(3) = plot(xyf(:,1),xyf(:,2),'-ks','markersize',12,'linewidth',2);
uistack(fliplr(h),'top')
xlabel('Dim 1'); ylabel('Dim 2');
title(['Hausdorff Distance = ' num2str(m)])
legend(h,{'P','Q','Hausdorff Dist'},'location','best')
elseif sP(2) == 1
ofst = hd/2; % plotting offset
h(1) = plot(P(:,1),ones(1,sP(1)),'bx','markersize',10,'linewidth',3);
h(2) = plot(Q(:,1),ones(1,sQ(1))+ofst,'ro','markersize',8,'linewidth',2.5);
% draw all minimum distances from set P
Xp = [P(1:sP(1)) Q(ixp)];
Yp = [ones(sP(1),1) ones(sP(1),1)+ofst];
plot(Xp',Yp','-b');
% draw all minimum distances from set Q
Xq = [P(ixq) Q(1:sQ(1))];
Yq = [ones(sQ(1),1) ones(sQ(1),1)+ofst];
plot(Xq',Yq','-r');
% denote the hausdorff distance
h(3) = plot(xyf(:,1),[1+ofst;1],'-ks','markersize',12,'linewidth',2);
uistack(fliplr(h),'top')
xlabel('Dim 1'); ylabel('visualization offset');
set(gca,'ytick',[])
title(['Hausdorff Distance = ' num2str(m)])
legend(h,{'P','Q','Hausdorff Dist'},'location','best')
elseif sP(2) == 3
h(1) = plot3(P(:,1),P(:,2),P(:,3),'bx','markersize',10,'linewidth',3);
h(2) = plot3(Q(:,1),Q(:,2),Q(:,3),'ro','markersize',8,'linewidth',2.5);
% draw all minimum distances from set P
Xp = [P(1:sP(1),1) Q(ixp,1)];
Yp = [P(1:sP(1),2) Q(ixp,2)];
Zp = [P(1:sP(1),3) Q(ixp,3)];
plot3(Xp',Yp',Zp','-b');
% draw all minimum distances from set Q
Xq = [P(ixq,1) Q(1:sQ(1),1)];
Yq = [P(ixq,2) Q(1:sQ(1),2)];
Zq = [P(ixq,3) Q(1:sQ(1),3)];
plot3(Xq',Yq',Zq','-r');
% denote the hausdorff distance
h(3) = plot3(xyf(:,1),xyf(:,2),xyf(:,3),'-ks','markersize',12,'linewidth',2);
uistack(fliplr(h),'top')
xlabel('Dim 1'); ylabel('Dim 2'); zlabel('Dim 3');
title(['Hausdorff Distance = ' num2str(m)])
legend(h,{'P','Q','Hausdorff Dist'},'location','best')
end
subplot(1,2,2)
% add offset because pcolor ignores final rows and columns
[X Y] = meshgrid(1:(sQ(1)+1),1:(sP(1)+1));
hpc = pcolor(X-0.5,Y-0.5,[[D; D(end,:)] [D(:,end); 0]]);
set(hpc,'edgealpha',0.25)
xlabel('ordered points in Q (o)')
ylabel('ordered points in P (x)')
title({'Distance (color) between points in P and Q';...
'Hausdorff distance outlined in white'})
colorbar('location','SouthOutside')
hold on
% bug: does not draw when hd is the very last point
rectangle('position',[ixhd(1)-0.5 ixhd(2)-0.5 1 1],...
'edgecolor','w','linewidth',2);
end
Can anyone help me how to modify these data please????????

Antworten (0)

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by